
Speeding up ImageNet Training on Supercomputers
Yang You1, Zhao Zhang2, Cho-Jui Hsieh3, James Demmel1, Kurt Keutzer1

UC Berkeley1, TACC2, UC Davis3

ABSTRACT
In this paper, we showcase supercomputers’ capability of speeding
up ImageNet training using thousands of processors. Our technical
solution is based on the layer-wise adaptive rate scaling (LARS) al-
gorithm. Using the Stampede2 supercomputer, we are able to reduce
the 100-epoch AlexNet and ResNet-50 training on the ImageNet
1k-category (ImageNet-1k) dataset from hours to 11 minutes and
20 minutes, respectively. Our solution matches the state-of-the-art
top-1 test accuracy in both cases. Particularly for ResNet-50, the
top-1 test accuracy converges to the baseline of 74.9% at the 64th
epoch, which is 14 minutes from the beginning. Compared to the
baseline of a previous study from a group of Facebook researchers,
our solution shows a higher top-1 test accuracy on batch sizes that
are larger than 16k. The implementation is open source and has
been released in the Intel distribution of Caffe v1.0.7.

KEYWORDS
Distributed Machine Learning, Scalable Algorithm

ACM Reference format:
Yang You1, Zhao Zhang2, Cho-Jui Hsieh3, James Demmel1, Kurt Keutzer1.
2018. Speeding up ImageNet Training on Supercomputers. In Proceedings of
SysML conference, Stanford, CA, USA, Feb 2018 (SysML’18), 2 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Deep neural networks (DNN) are increasingly popular in both
scientific research and industry. Traditionally, practitioners train
models on one or multiple GPUs, and a single training process can
take days to finish. For example, the 90-epoch ResNet-50 training
on the ImageNet-1k dataset using a Nvidia M40 GPU takes 14 days.
In particular, this DNN training process has ∼ 1018 single precision
operations in total. On the other hand, the world’s current fastest
supercomputer can finish 2 × 1017 single precision operations per
second. If the above training can make full use of the computing
capability of the fastest supercomputer, it should be able to finish
in five seconds.

Over the last two years, researchers have focused on closing this
significant performance gap by scaling DNN training to larger num-
bers of processors. Most successful approaches to scaling ImageNet
training have used the synchronous stochastic gradient descent
(synchronous SGD). One of the challenges using synchronous SGD
at scale is to maintain the machine efficiency, where it requires
sufficient amount of work for each processor. Thus, the focus on
scaling DNN training has translated into a focus on developing
training algorithms that enable large batch size in data-parallel
synchronous SGD without losing test accuracy over a fixed number
of epochs.

SysML’18, Feb 2018, Stanford, CA, USA
2018. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Figure 1: Top-1 Test Accuracy Comparison. Our baseline’s accuracy is
slightly lower than Facebook’s version (76.2% vs 75.3%), as we use weaker data
augmentation. However, at large batch sizes larger than 16k, our accuracy is
significantly higher than Facebook’s accuracy [1].

Table 1: Compare to state-of-the-art ImageNet training
speed with ResNet-50.

Work Batch Size Hardware Test Accuracy Time
Akiba et al. 32K 1024 P100 GPUs 74.9% 15 mins
Our version 32K 2048 Intel KNLs 74.9% 14 mins

As a result, we have seen the batch size and number of processors
increase from 1k batch size on 128 processors [3] to 8k batch size
on 256 processors [1] over the last two years. In collaboration with
researchers at NVIDIA, we proposed LARS algorithm [6], which
increased batch size further to 32k for some DNN models.

Following up on this work, we want to evaluate the effective-
ness of the LARS algorithm on scales of thousands of processors
and explore supercomputer’s capability in reducing DNN training
time. In this paper we present the results of this investigation: we
efficiently used 2,048 Intel Xeon Platinum 8160 processors to finish
the 100-epoch AlexNet training in 11 minutes with 58.6% accuracy,
and we used 2,048 Intel Xeon Phi 7250 processors to finish the
90-epoch ResNet-50 training in 20 minutes while converging to the
state-of-the-art top-1 test accuracy of 74.9% from the 64th epoch,
which is 14 minutes from the beginning. Furthermore, our solution
shows test higher accuracy on batch sizes that are larger than 16k 1,
compared to previous results from Facebook researchers. Our code
has been released in the Intel distribution of Caffe v1.0.7.

2 STATE-OF-THE-ART RESULTS
For large batch DNN training, we need to ensure that the large
batch achieves similar top-1 test accuracy with the small batch
by running the same number of epochs. Here we fix the number

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

SysML’18, Feb 2018, Stanford, CA, USA Y. You, Z. Zhang, C-J. Hsieh, J. Demmel, K. Keutzer

of epochs because: statistically, one epoch means the algorithm
touches the entire dataset once; and computationally, fixing the
number of epochs means fixing the total number of floating point
operations. State-of-the-art approaches for large batch training
include two techniques:

(1) Linear Scaling [4]: As the batch size increases from B to kB,
the learning rate should increase from η to kη.

(2) Warmup Scheme [1]: With a large learning rate (η), the
training process should start from a small η and increase it to the
large η in the first few epochs.

By using these techniques, researchers can scale the batch size
to 8K. Table 2 shows the state-of-the-art results for large batch
training. Goyal et al. [1] finished the 90-epoch ResNet-50 training in
65 minutes on 256 P100 GPUs by using a batch size of 8k. However,
we observe that state-of-the-art approaches can only scale batch
size to 1k for AlexNet and 8k for ResNet-50. If we increase the
batch size to 4k for AlexNet, we can only achieve a 53.1% top-1 test
accuracy, which is a 4.9% loss to the baseline.

Table 2: State-of-the-art Large Batch Size and Accuracy.

Team Model Small Batch / Accuracy Large Batch / Accuracy

Google [4] AlexNet 128 / 57.7% 1k / 56.7%
Amazon [5] ResNet-152 256 / 77.8% 5k / 77.8%
Facebook [1] ResNet-50 256 / 76.40% 8k / 76.26%

3 LAYER-WISE ADAPTIVE RATE SCALING
To improve the accuracy for large batch training, a new rule of
learning rate (LR) schedule was developed. As mentioned before,
we use w = w − η∇w to update the weights. Each layer has its
own weightw and gradient ∇w . Standard SGD algorithm uses the
same LR (η) for all the layers. However, from our experiments, we
observe that different layers may need different LRs. The reason
is that the ratio between | |w | |2 and | |∇w | |2 varies significantly for
different layers. From example, we observe that | |w | |2/| |∇w | |2 is
only 20 for the conv1.1 layer but 3,690 for the fc6.1 layer, as shown
in Table 3.

To speedup the convergence, the users need to use a large LR for
the fc6.1 layer. However, this large LR may lead to divergence in
the conv1.1 layer. We think this is an important reason of the opti-
mization difficulty in large batch training. Goyal et al [1] proposed
the warmup scheme to solve this problem. The warmup scheme
works well for ResNet-50 training (batch size ≤ 8k). However, only
using this recipe does not work for AlexNet with batch size > 1k
and ResNet-50 with batch size > 8k.

Table 3: The Ratios between | |w | |2 and | |∇w | |2 on the fc6.1
and conv1.1 Layer of AlexNet

Layers | |w | |2 | |∇w | |2 | |w | |2/ | |∇w | |2

fc6.1 6.400 0.001734 3690

conv1.1 0.098 0.004909 20

The Layer-wise Adaptive Rate Scaling (LARS) scheme [6] was
proposed to improve large-batch’s accuracy. The base LR rule is
defined in Equation (1).

Table 4: We use the same data augmentation with the origi-
nal ResNet-50 model [2].

Batch Size epochs Peak Top-1 Accuracy hardware time
256 90 75.3% 16 KNLs 45h
16384 90 75.3% 1024 CPUs 52m
16000 90 75.3% 1600 CPUs 31m
32768 90 75.4% 2048 KNLs 20m
32768 64 74.9% 2048 KNLs 14m

η = l × γ ×
||w | |2
| |∇w | |2

(1)

l is the scaling factor, which we set as 0.001 for AlexNet and
ResNet training. γ is a tuning parameter for users. Usually γ can
be chosen by linear scaling. In this formulation, different layers
can have different LRs. In practice, we add momentum (denoted as
µ) and weight decay (denoted as β) to SGD, and use the following
sequence for LARS:

(1) get the local LR for each learnable parameter by α = l ×
||w | |2/(| |∇w | |2 + β | |∇w | |2);

(2) get the true LR for each layer by η = γ × α ;
(3) update the gradients by ∇w = ∇w + βw ;
(4) update acceleration term a by a = µa + η∇w ;
(4) update the weights byw = w − a.

4 EXPERIMENTAL RESULTS
We examine the effectiveness of our solution which is based on
the LARS algorithm, the linear scaling technique, and the warmup
scheme on the Stampede2 supercomputer. Enabled by the large
batch size of 32k, the 100-epoch AlexNet training finsihed in 11
mins on 2,048 Intel Xeon Phi processors, and the 90-epoch ResNet-
50 training finished in 20 mins on 2,048 Intel Platinum 8160 proces-
sors without losing top-1 test accuracy. Other evaluation results is
presented in Table
reftab:resnet50speedcost .
5 ACKNOWLEDGEMENT
The Layer-wise Adaptive Rate Scaling (LARS) algorithm was de-
veloped by Y. You, B. Ginsburg, and I. Gitman when Y. You was an
intern at NVIDIA [6]. The work presented in this paper was sup-
ported by the National Science Foundation, through the Stampede
2 (OAC-1540931) award.

REFERENCES
[1] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski,

Aapo Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming He. 2017. Accu-
rate, Large Minibatch SGD: Training ImageNet in 1 Hour. arXiv preprint
arXiv:1706.02677 (2017).

[2] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 770–778.

[3] Forrest N Iandola, MatthewWMoskewicz, Khalid Ashraf, and Kurt Keutzer. 2016.
FireCaffe: near-linear acceleration of deep neural network training on compute
clusters. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2592–2600.

[4] Alex Krizhevsky. 2014. One weird trick for parallelizing convolutional neural
networks. arXiv preprint arXiv:1404.5997 (2014).

[5] Mu Li. 2017. Scaling Distributed Machine Learning with System and Algorithm
Co-design. Ph.D. Dissertation. Intel.

[6] Yang You, Igor Gitman, and Boris Ginsburg. 2017. Scaling SGD Batch Size to 32K
for ImageNet Training. (2017).

	Abstract
	1 Introduction
	2 State-of-the-art Results
	3 Layer-wise Adaptive Rate Scaling
	4 Experimental Results
	5 Acknowledgement
	References

