Scaling HDBSCAN Clustering with kNN Graph Approximation

Jacob Jackson
Petuum, Inc.
jacobbfjackson@gmail.com

1 INTRODUCTION

Clustering algorithms have found applications in a variety of fields in-
volving exploratory data analysis, including document retrieval [1],
image search [2], and bioinformatics [3]. HDBSCAN [4] is one such
algorithm which is well-suited for these applications, being able to
model clusters in many naturally occurring data. However, tradi-
tional implementations of HDBSCAN scale poorly with the size of
data, requiring a full kNN graph [5] to be constructed over all points
in the dataset.

Simpler clustering models such as k-means [6] are popular for
data-intensive applications because they can be efficiently scaled to
large datasets [7]. However, they also tend to have restrictions for
the data and/or user, limiting their usefulness for real-world data.
For example, they may assume that clusters are normally distributed
around a mean point [8], the user knows the number of clusters
ahead of time, or that there are no noise points in the data. These
shortcomings are avoided by many hierarchical and density-based
clustering algorithms like HDBSCAN.

In our work, we investigate the feasibility of scaling up HDBSCAN.
We approach the problem by using two key optimizations:

(1) Replace the computationally expensive kNN graph con-
struction with a more scalable approximation algorithm.

(2) Replace a step which finds a minimum spanning tree of the
complete graph of all data points, by finding the minimum
spanning tree of the kNN graph instead.

Using these optimizations, we obtain an efficient approximation to
HDBSCAN which works well on large datasets. We implement this
approach as a distributed system, and show that it achieves over 40x
better performance than a popular exact implementation of HDB-
SCAN. Additionally, we find that the approximations we used result
in minimal difference when compared with exact HDBSCAN results.
We obtain reasonable output from a large word embedding dataset
containing hundreds of clusters, demonstrating the flexibility of the

approach.

2 BACKGROUND

2.1 HDBSCAN

HDBSCAN is a hierarchical density-based clustering algorithm. It
takes N points with dimensionality D and a distance metric d as
input. The algorithm works in three phases:

(1) Find the K-th nearest neighbor of each point according to
the distance metric d, where K is a hyperparameter. By
ap we denote the distance between point p and its K-th
nearest neighbor. In subsequent steps, HDBSCAN uses the

SysML’18, Stanford, CA
....$15.00
DOIL:

Aurick Qiao
Petuum, Inc.
Carnegie Mellon University
aurick.qiao@petuum.com

Eric P. Xing
Petuum, Inc.
Carnegie Mellon University
eric.xing@petuum.com

following modified distance metric:
d(x,y) =max(ax,ay,d(x.,y))
The purpose of using this modified metric is to reduce sen-
sitivity to outliers.
(2) Find the minimum spanning tree of the points, where for
each pair of points x and y there is an edge connecting them
with weight d(x.y).
(3) Extract clusters from the minimum spanning tree.
Steps (1) and (2) are computationally expensive: they both have time
complexity O(N2D). An algorithm which is quadratic in the number
of points will not scale to datasets containing millions of points.

One technique for dealing with such datasets is sub-sampling,
where the algorithm is run on a fraction of the dataset. This can be
effective, but it is not suitable in all instances. For an example, con-
sider the word embedding dataset described in Sec. 4. This dataset
contains hundreds of clusters of fewer than 10 points, which would
be difficult to extract from a sub-sample of the dataset.

Previous work on HDBSCAN [9] used k-d trees [10] to optimize
step (1), but the worst-case complexity of step (1) is unchanged. As
our experiments will show, this worst-case complexity is realized
when the dimensionality D is sufficiently large. This is why we turn
to approximation to scale the algorithm to large N and D.

2.2 NN-Descent

NN-Descent [11] is an approximate kNN graph construction algo-
rithm. It is based on the principle that “a neighbor of a neighbor is
likely to be a neighbor”. A list of K candidate nearest neighbors is
maintained for each point. In each step, for each point p, the algo-
rithm examines all neighbors of neighbors of p and adds them to the
neighbor list of p if they are closer than the last entry of p’s neighbor
list (thus replacing this last entry). This improves the accuracy of the
kNN graph in each iteration. The algorithm stops when the number
of updatesin an iteration falls below a certain threshold. NN-Descent
possesses several desirable qualities which make it well-suited for
this application:
e It hasbeen shown to perform well on a variety of datasets
and distance metrics [11].
o It supports useful non-metric spaces such as the space in-
duced by the cosine similarity metric.
e It has an O(n!-!%) empirical runtime, which is consistent
with our results and makes it scalable to larger datasets.
e It can be easily distributed to multiple cores and machines.

SysML’18, February 2018, Stanford, CA

Dimension | FM score | Clusters (theirs) | Clusters (ours)
1 0.896 6267 6285
2 0.959 840 842
3 0.934 1129 1135
4 0.941 1117 1115
5 0.942 1104 1100
6 0.948 1075 1079
7 0.956 1044 1050
8 0.957 1028 1029
9 0.958 1027 1023
10 0.961 1020 1018

Table 1: FM score measuring the similarity of our implemen-
tation’s output with the output of the exact implementation
by MclInnes et al.

3 DESIGN AND IMPLEMENTATION

To approximate step (1) of HDBSCAN, we run NN-Descent.

To approximate step (2), we find the minimum spanning tree of
the graph produced by NN-Descent (which has KN edges) rather
than the all-pairs graph (which has N(N —1)/2 edges). This choice
is justified as follows. The only important edges of the minimum
spanning tree used by step (3) are those which connect points in the
same cluster. Thus we expect that removing edges not present in the
k-NN graph will preserve most of the important edges.

We implemented our HDBSCAN application using Litz [12], a
framework for distributed machine learning. The minimum span-
ning tree is found using Kruskal’s algorithm [13] when the points fit
on one machine’s memory and Bortvka’s algorithm [14] when they
must be split across machines. Most of the computational cost lies in
running NN-Descent, so we devoted significant effort to optimizing
this part of the algorithm.

We modified NN-Descent to achieve constant-factor improve-
ment in the distributed case. In NN-Descent, points are partitioned
evenly among the machines, and each machine keeps track of the
nearest neighbors of its points. To update these nearest neighbor
lists, an update is sent consisting of x, y, and d(x,y) to the machine
holding x. The update is accepted if d(x,y) is less than the distance
between x and the most distant element of the nearest neighbor list
of x, denoted dpax(x).

Sending data over the network is more expensive than accessing
local memory, so we send dmax(x) to all neighbors of x at the start
of each iteration of updates. That allows those neighbors to discard
updates to x before sending them through the network if the dis-
tance of the update is larger than dmax(x). This technique led to a
42% decrease in runtime when running NN-Descent on the GloVe
dataset [15] (described in the next section) with 4 machines.

4 RESULTS

To test our implementation on real-world data, we ran it on the GloVe
dataset containing 400,000 points with dimension 300. We imposed
a maximum cluster size of 1,000 to avoid assigning all points to the
same cluster. Using the dot product metric and running on 4 AWS
m4.xlarge instances, our implementation finished in 143 seconds,

Jacob Jackson, Aurick Qiao, and Eric P. Xing

Performance of HDBSCAN implementations

300 T T /\D -
250 - —— Mclnnes et al. M
—a— Our approach (single machine)
T 200 —6— Our approach (distributed) ||
=
=
s 150 - *
v
E
& 100 .
50 |- *
T |
219920 521 922 223

Number of points

Figure 1: Performance of our implementation compared
with the exact implementation by McInnes et al.

producing 329 clusters as output. We find that the clusters produced
are qualitatively valid, examples include:

o Joafloaves rigatoni tofu spaghetti orzo tacos snacks fettuc-
cine penne dente linguine couscous sausage pasta cheese
bread noodles sandwiches

o infinitive imperfective noun nominative pronoun dative
genitive verb participle subjunctive accusative

e phikappa epsilon theta sigma

To obtain a more quantitative measure of the accuracy of our
approximation, we compare with the implementation by McInnes
et al. using the Fowlkes-Mallows index [16] running on a synthetic
dataset. The dataset consists of 100,000 points, with 1,000 clusters,
where 20% of the points were noise. The remaining points were
randomly distributed among the clusters; the points in a cluster
were normally distributed about the center of the cluster. Table 1
summarizes these results.

We performed a similar experiment to test efficiency. We gener-
ated 10 synthetic clusters of points with dimension 10 and varied the
number of points. We found that with 223 points, our single-machine
implementation was over 40 times faster. Fig. 1 shows how the im-
plementations scale with the number of points. The distributed tests
are run using 4 AWS m4.xlarge instances. The performance of our
implementation is consistent with the O(n!-14) empirical runtime
of NN-Descent.

5 CONCLUSION AND FUTURE WORK

We have described an approach for approximating the result of HDB-
SCAN with high accuracy and efficiency. This allows HDBSCAN to
be used on larger datasets than was previously possible.

Future work may focus on the theoretical properties of this ap-
proach, deriving bounds for the inaccuracy due to approximation
error. Many methods exist for finding approximate k-NN, and alter-
natives to NN-Descent deserve investigation.

Scaling HDBSCAN Clustering with kNN Graph Approximation

REFERENCES

(1]

(2]

(3]

[12]

[13]

[14]

[15]

[16]

Ellen M Voorhees. Implementing agglomerative hierarchic clustering algo-
rithms for use in document retrieval. Information Processing & Management,
22(6):465-476, 1986.

Nadav Ben-Haim, Boris Babenko, and Serge Belongie. Improvingweb-based
image search via content based clustering. In Computer Vision and Pattern
Recognition Workshop, 2006. CVPRW”06. Conference on, pages 106-106. IEEE, 2006.
Weizhong Li and Adam Godzik. Cd-hit: a fast program for clustering and
comparing large sets of protein or nucleotide sequences. Bioinformatics,
22(13):1658-1659, 2006.

Ricardo J. G. B. Campello, Davoud Moulavi, and Joerg Sander. Density-Based
Clustering Based on Hierarchical Density Estimates, pages 160-172. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2013.

Preparata Franco and Michael Ian Preparata Shamos. Computational geometry:
an introduction. 1985.

J. MacQueen. Some methods for classification and analysis of multivariate
observations. Proc. 5th Berkeley Symp. Math. Stat. Probab., Univ. Calif. 1965/66,
1, 281-297 (1967)., 1967.

David Sculley. Web-scale k-means clustering. In Proceedings of the 19th
international conference on World wide web, pages 1177-1178. ACM, 2010.

J. Liicke and D. Forster. k-Means is a Variational EM Approximation of Gaussian
Mixture Models. ArXiv e-prints, April 2017.

Leland McInnes, John Healy, and Steve Astels. hdbscan: Hierarchical density
based clustering. The Journal of Open Source Software, 2(11), mar 2017.

Jon Louis Bentley. Multidimensional binary search trees used for associative
searching. Commun. ACM, 18(9):509-517, September 1975.

Wei Dong, Charikar Moses, and Kai Li. Efficient k-nearest neighbor graph
construction for generic similarity measures. In Proceedings of the 20th
International Conference on World Wide Web, WWW ’11, pages 577-586, New
York, NY, USA, 2011. ACM.

Aurick Qiao, Abutalib Aghayev, Weiren Yu, Haoyang Chen, Qirong Ho, Garth A
Gibson, and Eric P Xing. Litz: An elastic framework for high-performance
distributed machine learning. 2017.

Joseph B. Kruskal. On the shortest spanning subtree of a graph and the traveling
salesman problem. Proceedings of the American Mathematical Society, 7(1):48-50,
1956.

O. Borti vka. Uber ein Minimalproblem. Prace moravské piirodovédecké
spolecnosti 3 (1926), 37-58 (1926)., 1926.

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global
vectors for word representation. In Empirical Methods in Natural Language
Processing (EMNLP), pages 1532-1543, 2014.

E. B. Fowlkes and C. L. Mallows. A method for comparing two hierarchical
clusterings. Journal of the American Statistical Association, 78(383):553-569, 1983.

SysML’18, February 2018, Stanford, CA

	1 Introduction
	2 Background
	2.1 HDBSCAN
	2.2 NN-Descent

	3 Design and Implementation
	4 Results
	5 Conclusion and Future Work
	References

