
BlazeIt: An OptimizingQuery Engine for Video at Scale
Extended Abstract

Daniel Kang, Peter Bailis, Matei Zaharia

Stanford InfoLab, DAWN Project

ABSTRACT

Recent advances in deep learning allow us to query the increasing

volumes of video data for semantic information. However, these

techniques are difficult to deploy in practice and are incredibly com-

putationally expensive. To address these limitations, we propose

BlazeIt, a system with a query language and optimizer to accel-

erate complex queries over video. We demonstrate that BlazeIt

can answer a wide range of queries and give significant speed

improvements, up to 16×.

1 INTRODUCTION

Video is rich with semantic information and is a rapidly expanding

source of data at scale: camera traps are widely used to study animal

behavior [10], London has over 500,000 CCTVs [1], and autonomous

vehicles can generate terabytes of data per day [5]. This growing

volume of video can provide answers to queries about the real world.
A city planner might ask, given a video of an intersection, when did

buses arrive at this intersection? An ornithologist might ask, given

a video of a bird feeder, what is the average time a bird spends at

the feeder? When did red birds feed? An analyst at an autonomous

vehicle company might look for clips of crosswalks. We consider

these three examples as instantiations of general video analytics.

Recent advancements in deep learning provide powerful primi-

tives for object detection [4] and semantic segmentation [6], which

are rapidly improving [9]. However, actually applying these models

to answer visual queries requires considerable effort. Consider ob-

ject detection and entity resolution (the task of identifying objects

as the same across several frames or scenes in a video) [3]. To cal-

culate how long a bus stays on average at a stop sign, we could run

the following steps over the video: 1) run object detection on every

frame, 2) filter the detections for buses, 3) resolve which buses are

the same in a scene, 4) return the average stay time. Likewise, the

other queries can be answered in an ad-hoc fashion, by chaining

together computer vision primitives.

Even when these ad-hoc pipelines are constructed, they can be

prohibitively expensive to run at scale: state-of-the-art video object

detection [12] runs at 5 frames per second (fps) on an NVIDIA P100

GPU (~$4000). Thus, using current technology, computing the aver-

age stay time over a week of video would take about 1.5 months of

GPU time. As these volumes of videos grow, these analytic capabil-

ities will only become more expensive.

To address the computational and usability challenges of query-

ing video at scale, BlazeIt, a system with a query language and

optimizer designed to accelerate queries over video.

BlazeIt’s first component is its query language, FrameQL, which

provides users with a relational programming interface that allows

SysML’18, February 2018, Stanford, CA
2018. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

Field Type Description

timestamp float Time stamp

mask (float, float)*

Polygon containing the object

of interest, typically a rectangle

class string Object class (e.g. bus, car, person)

sceneid int

Unique identifier for a continuous time

segment when the object is visible

globalid int

Unique global identifier for object (e.g.

license plate number)

content image The pixel content of the object

Table 1: FrameQL’s schema contains spatiotemporal and

content information related to objects of interest, as well as

metadata (class, identifiers). Each record is associated with

a frame, but a frame may have no or many records.

queries for object occurrence (in space and time) and content (class,

metadata). Table 1 shows the schema. FrameQL’s schema along

with the relational algebra can answer all the example above queries

and more.

We note that not all fields are possible to compute for every

video, e.g. license plate numbers can be used as a global identifier

for cars, but identifying birds is difficult for even humans. We allow

the user to specify the different components in BlazeIt (e.g. the

object detection method, the identification method). For example,

an ornithologist may use an object detector that can detect different

species of birds, but autonomous vehicle analysis may not need

to detect birds at all. Finally, we allow UDFs over the fields and

content (e.g. to determine color, center position, etc).

The second component of BlazeIt is an end-to-end query opti-

mizer: instead of simply running object detection to instantiate the

rows in an FrameQL scene, BlazeIt leverages a range of techniques

including specialization [8] and frame filtering. One key compo-

nent of BlazeIt is that the rows are lazily populated: BlazeIt’s
query optimizer will create and execute a physical plan that only

populates the fields necessary for a given query, which enables a

variety of non-trivial optimizations, discussed in Section 3. As a

simple example, few buses pass by an intersection at 4AM and a

cheap method could be used to filter for when buses appear [8].

Prior work has focused on optimizing basic detection algorithms

[11], but we focus on optimizations of end-to-end queries here.

2 QUERY LANGUAGE

We introduce FrameQL as a query language for querying videos at

the frame level. FrameQL’s scheme is described in Table 1. Users

can query FrameQL using a standard SQL interface and the rela-

tional algebra. By providing a simple table-like schema using the

relational algebra, we enable users with only familiarity with SQL

to query videos, whereas implementing these queries manually

would require expertise in deep learning, computer vision, systems

building, etc. Thus, by unifying the video queries with the relational

algebra, we enable non-specialists to access these queries.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

SysML’18, February 2018, Stanford, CA Daniel Kang, Peter Bailis, Matei Zaharia

We describe how FrameQL can be used to answer a complex

query: “show me clips of red birds at least 1 second long in the

lower left corner”. Here, color is a function that operates over the

contents of the object and returns a color, and the video is at 30 fps

which is why the query is filtered by at least 30 timestamps. Finally,

we define the lower left corner to be the bottom 600×600 pixel box.

The other queries in the introduction can be answered similarly.

SELECT timestamp FROM bird_feeder
WHERE class = 'bird' AND color(content) = 'red'

AND xmax(mask) < 600
GROUP BY sceneid
HAVING COUNT(timestamp) >= 30

3 QUERY OPTIMIZER

Here, we describe BlazeIt’s query optimization for FrameQL. In

BlazeIt, rows are only instantiated upon request. Fully populating

the table (i.e. SELECT *) does not allow for query optimization,

but selecting certain fields or ranges can run dramatically faster.

For example, an analyst may only require the frames in which a

bird appears, but not the bounding boxes (i.e. SELECT timestamp):

in this case model specialization [8] can allow several orders of

magnitude of speedup, as the query changes from detection to

classification. When the user issues a query, BlazeIt first creates

a logical plan. Then, BlazeIt estimates the selectivities of various

filter and picks the physical plan with the lowest estimated cost.

In BlazeIt, we provide 5 classes of query optimizations: 1) label-

based filtering, 2) content-based filtering, 3) temporal filtering, 4)

spatial filtering, and 5) predicate reordering. As these filters typi-

cally rely on statistical methods, they have some error rate which

must be accounted for, e.g. using a cost-based optimizer as in [8].

While some of these optimizations have been previously explored

in isolation, we consider larger queries where we can apply other

ideas from traditional query optimization [2] as well as take advan-

tage of the nature of video data. BlazeIt, to our knowledge, is the

first engine to apply these to video queries using CNNs. Finally, we

provide several instantiations of these optimizations, but we note

that there are many other such instantiations, which we view as an

exciting avenue for future research.

Label-based filtering. In label-based filtering, the video is filtered

based on the desired labels. NoScope [8] explores label-based filter-

ing for binary predicates (e.g. presence or absence of a bus). This

optimization can provide enormous speedups (up to 6000×) in the

form of model specialization, in which a cheaper model for the task

at hand is trained over a subset of the data and deployed for the rest.

While NoScope considers binary predicates, we plan to explore

other forms of specialization, including multi-class and counting

queries, and we see the selection and training of specialized models

in complex queries as an exciting area of future research.

Content-based filtering. In content-based filtering, the video is

filtered based on fast, low-level visual features, such as average

color. If an analyst were to query for “red birds”, we could filter the

video to have a certain number of red pixels.

Temporal filtering. In temporal filtering, the video is filtered

based on temporal cues. For example, if only clips that are over

3 seconds are desired (e.g. to study the behavior of birds feeding

Naiv
e

Conten
t

Tem
pora

l
Spatia

l
Lab

el

Com
bined

0

50

Th
ro

ug
hp

ut
 (f

ps
)

1.0x 3.0x 2.0x 1.4x 1.8x

16.1x

Figure 1: Throughput of BlazeIt’s various optimizations.

at a feeder, not ones passing by), the video can be sampled at 1.5

seconds. We additionally support basic forms of filtering such as

“query the video from 10AM to 11AM”.

Spatial filtering. In spatial filtering, only regions of interest (ROIs)

of the scene are considered. For example, a street may have cars

parked on the side but the analyst may only be interested in vehicles

in transit. The ROI is specified by the user and can be used in smaller

models for faster inference, and activity outside the ROI can be

ignored, which increases the selectivity of other filters.

Predicate reordering. In predicate reordering, different predi-

cates in the query can be reordered based on the selectivity, error

rate, and cost of the filters. For example, in the query “showme clips

of red birds that are present for more than 3 seconds”, the filters of

“bird”, “red”, and “more than 3 seconds” can be ordered in several

ways, which affects the runtime. The selectivities and runtime costs

can be estimated using a held-out dataset and optimized using a

cost-based optimizer [8].

4 PRELIMINARY RESULTS

We manually implemented the query in Section 2 using a state-of-

the-art video object detector [12] (FGFA) and OpenCV. Then, we

implemented each optimization in isolation and combined them.

Experiments were done on a server with an NVIDIA P100 GPU and

an Intel Xeon E5-2690 CPU. As is standard, we ignored the time to

load the video. Video from a bird-feeder was collected for 3 days in

December with 9 hours of video per day, to prevent over-fitting. A

separate day was used for training labels, estimating selectivity, and

inference. We only time the cost of inference. The naive baseline

was computed by running FGFA over every frame of the video and

using Seq-NMS [7] to identify birds across frames.

The results are shown in Figure 1. As we can see, by performing

end-to-end optimization, we can achieve a speedup of up to 16×.

The combined speedup is higher than the product of the individual

speedups as the selectivity of “bird” and “red” is higher than product

of the individual selectivities. Predicate reordering is only used in

the combined setting.

5 CONCLUSION

Video volumes and our ability to query these videos through deep

learning continue to grow. However, when naively applied, these

methods are prohibitively expensive to run at scale, and the need for

computation will only increase. In response, we introduce FrameQL

for complex video queries and a query optimizer for executing

FrameQL queries. We demonstrate several classes of optimizations

and show how they can combine to achieve 16× speedups.

BlazeIt: An OptimizingQuery Engine for Video at Scale SysML’18, February 2018, Stanford, CA

ACKNOWLEDGEMENTS

This research was supported in part by affiliate members and other

supporters of the Stanford DAWN project—Google, Intel, Microsoft,

Teradata, and VMware—as well as DARPA under No. FA8750-17-

2-0095 (D3M), industrial gifts and support from Toyota Research

Institute, Juniper Networks, Keysight Technologies, Hitachi, Face-

book, Northrop Grumman, NetApp, and the NSF under grants DGE-

1656518 and CNS-1651570.

REFERENCES

[1] 2015. CCTV: Too many cameras useless, warns surveillance watchdog Tony

Porter. (2015). http://www.bbc.com/news/uk-30978995

[2] Morton M. Astrahan, Mike W. Blasgen, Donald D. Chamberlin, Kapali P. Eswaran,

Jim N Gray, Patricia P. Griffiths, W Frank King, Raymond A. Lorie, Paul R.

McJones, James W. Mehl, et al. 1976. System R: Relational approach to database

management. ACM Transactions on Database Systems (TODS) 1, 2 (1976), 97–137.
[3] Indrajit Bhattacharya and Lise Getoor. 2007. Collective entity resolution in

relational data. ACM Transactions on Knowledge Discovery from Data (TKDD) 1,
1 (2007), 5.

[4] Pedro F Felzenszwalb, Ross B Girshick, David McAllester, and Deva Ramanan.

2010. Object detection with discriminatively trained part-based models. IEEE
transactions on pattern analysis and machine intelligence 32, 9 (2010), 1627–1645.

[5] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun. 2013. Vision

meets Robotics: The KITTI Dataset. International Journal of Robotics Research
(IJRR) (2013).

[6] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. 2014. Rich

feature hierarchies for accurate object detection and semantic segmentation. In

Proceedings of the IEEE conference on computer vision and pattern recognition.
580–587.

[7] Wei Han, Pooya Khorrami, Tom Le Paine, Prajit Ramachandran, Mohammad

Babaeizadeh, Honghui Shi, Jianan Li, Shuicheng Yan, and Thomas S Huang. 2016.

Seq-nms for video object detection. arXiv preprint arXiv:1602.08465 (2016).
[8] Daniel Kang, John Emmons, Firas Abuzaid, Peter Bailis, and Matei Zaharia. 2017.

NoScope: optimizing neural network queries over video at scale. PVLDB 10, 11

(2017), 1586–1597.

[9] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva

Ramanan, Piotr Dollár, and C Lawrence Zitnick. 2014. Microsoft coco: Common

objects in context. In European conference on computer vision. Springer, 740–755.
[10] J Marcus Rowcliffe, Roland Kays, Bart Kranstauber, Chris Carbone, and Patrick A

Jansen. 2014. Quantifying levels of animal activity using camera trap data.

Methods in Ecology and Evolution 5, 11 (2014), 1170–1179.

[11] Haichen Shen, Seungyeop Han, Matthai Philipose, and Arvind Krishnamurthy.

2017. Fast video classification via adaptive cascading of deep models. CPVR
(2017).

[12] Xizhou Zhu, Yujie Wang, Jifeng Dai, Lu Yuan, and YichenWei. 2017. Flow-Guided

Feature Aggregation for Video Object Detection. ICVV (2017).

http://www.bbc.com/news/uk-30978995

	Abstract
	1 Introduction
	2 Query Language
	3 Query Optimizer
	4 Preliminary Results
	5 Conclusion
	References

