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ABSTRACT
Deep learning is both compute- and data-intense, and recentbreak-
throughs have largely been fueled by the fp32 compute capacity of
modern GPUs. This has made GPUs the prevalent tool for training
deep neural networks, but GPUs have only small amounts of costly
3D-stacked HBM DRAM as their local memory. Working out of a
small memory imposes a limit on the maximum learning capacity
a neural network can have (i.e., the number of learnable parame-
ters) and the maximum size and number of samples a network can
consume at a given time. The field of deep learning is evolvingin
many new directions, and research teams are exploring both very
large neural networks and attempting to apply deep learningto real
datasets, including high-resolution images. Those exploring both
the boundaries of neural networks and use of real datasets today
generally will find that their deep learning software won’t support
what they wish to train, and if it does, they find performace tobe
intolerably slow. In this paper, we present the idea of largemodel
support, and its implementation in two popular deep learning frame-
works, Caffe and Chainer. The key idea is to use GPU memory as
an application-level cache w.r.t. the host memory so that a large net-
work (e.g., many parameters or many layers) can be trained with
real-world samples (e.g., HD-images). Although our large model
support scheme may degrade the performance of training due to
the communication overhead between the system CPUs and GPUs,
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the overhead in general is observed to reduce significantly with the
use of a faster communication link between the CPU and GPU
(NVLink and next-Gen NVLink). Our experimental results show
that our large model support in Caffe and Chainer performs very
well, and can train 2 to 6 times larger ImageNet models.
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1 INTRODUCTION
Deep learning has become the de-facto technique for an increasing
number of cognitive applications, including vision, speech, and lan-
guage translation [1, 6, 7]. Its success is driven by the availability
of an enormous volume of data and advances in deep neural net-
works, which in turn make deep learning one of the most compu-
tationally demanding AI applications [1, 3, 8]. Hardware acceler-
ators like GPUs and their accompanying software stacks havepro-
vided a significant amount of speed-up [10]. However, GPUs have a
much smaller memory space (12-16GB) due to the expense of HBM
DRAM, chip pinout required to drive high memory bandwidth, and
wirability of the silicon interposers which carry the DRAM.In con-
trast, CPUs use a far more scalable type of DRAM memory (DDR3
or DDR4) and can easily have 64-512GB memory capacity. GPUs
have had similar memory capacity for the past 2-3 generations, but
deep neural network models have gotten deeper and wider to achieve
higher learning capacity. For example, [5] proposes a Resnet with
1001 layers, and Neural Machine Translation models [2] get un-
rolled into a large number of layers. Therefore, a complex neural
network which would be perfectly trained on CPUs may never be
trained on GPUs due to the limited device memory. Using the full
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Figure 1: Caffe LMS on 4 V100 GPUs

capability of a system (both the CPU memory and the GPU mem-
ory) together, in order to enable deep learning to continue to push
boundaires, motivates our large model support (LMS).

The key idea in LMS is to treat GPU memory as an application-
level cache w.r.t the host main memory. Basically, all data reside on
host memory and are copied to GPU memory only when needed.
After the GPU memory is used, depending on whether it has been
modified or has future usage, it can be either copied back to CPU
memory or simply discarded. To efficiently utilize GPU memory,
our LMS implementation keeps a large memory pool so that dif-
ferent memory pieces from CPU memory can share the same GPU
memory chunk. Therefore, at any moment, the GPU only holds data
necessary to process one operation, for example, the forward propa-
gation of one operation in a neural network. If the memory require-
ment from any operation is larger than the GPU memory, then even
LMS will fail as well. In theory, LMS should be able to handle a
deep neural network of an arbitrary capacity, as long as all the data
from the largest operation can fit into the GPU memory. A similar
idea has been proposed for Tensorflow in [4], but we discuss LMS
implementation in Caffe and Chainer and share our results.

2 EXPERIMENTAL RESULTS
We have successfully implemented LMS functionality in Caffe [7]
and Chainer [9] as part of the PowerAI deep learning softwaredis-
tribution. We have open sourced our implementations, and they are
available at the following github, [12] for Caffe, [11] for Chainer,
respectively. To demonstrate LMS functionality, we obtained the re-
sults of running 1000 iterations of an enlarged GoogLeNet model
(mini-batch size=5) on an enlarged ImageNet Dataset (crop size of
2240x2240) on two platforms:

• POWER9 AC922 system with next-Gen NVLink, CPU at
2.25 GHz with 1024 GB memory, 4x V100-SXM2 GPUs
on Red Hat Enterprise Linux 7.4 for Power Little Endian
(POWER9) with CUDA 9.1/ CUDNN 7

• Intel Xeon E5-2640 v4 at 2.4 GHz with 1024 GB memory,
4x V100-PCIe GPUs on Ubuntu 16.04. with CUDA .9.0/
CUDNN 7

The key difference between two platforms is the next-Gen NVLink
which connects CPUs and GPUs with 150GB/s bandwidth, while a
PCIe connection provides 16GB/s.

Fig. 1 shows the elapsed runtime for Caffe with LMS for the
first 1000 iterations. We observed that Caffe-LMS on P9 runs about
3.8x faster than on Xeon E5-2640 due to the NVLink 2.0. The same

Figure 2: Chainer LMS on 4 V100 GPUs

observation is made when we compare Chainer-LMS runs on both
platforms as in Fig. 2.

We also observed that LMS can improve the training performance
by maximizing GPU utilization. For Resnet-152 on Caffe, themaxi-
mum batch size without LMS was 32 and the corresponding through-
put was 91.2 images/sec. With LMS, we were able to increase the
batch size to 48 and improved the throughput to 121.2 images/sec
in spite of the CPU-GPU communication overhead.
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