
Learning Graph-based Cluster Scheduling Algorithms
Hongzi Mao Malte Schwarzkopf Shaileshh Bojja Venkatakrishnan Mohammad Alizadeh

MIT CSAIL

Abstract. Cluster schedulers today rely on coarse-grained, general-
ized heuristics and on extensive manual tuning. This can be costly:
they may run computations inefficiently or unnecessarily leave re-
sources idle. Modern reinforcement learning techniques, however,
allow future cluster schedulers to learn their own scheduling policy
instead of using an off-the-shelf policy, with significant benefits.

We introduce Clotho, a system that uses reinforcement learning
to automatically train scheduling policies for high-level objectives
without encoding human-engineered heuristics or making assump-
tions about the workload. Clotho learns to schedule jobs that consist
of graphs of tasks, setting both parallelism level and execution order
based purely on experience. Our Clotho prototype scheduler for
Spark outperforms the best heuristics — which already run jobs 2×
faster than Spark’s default scheduler — by another 20–33%. The poli-
cies it learns generalize across cluster sizes and workload variation.

1 Introduction and Motivation

Good cluster scheduling policies are crucial to efficiently utilize
data center resources: even small improvements in utilization can
save thousands of dollars at scale. Current cluster schedulers use
general-purpose heuristics that prioritize easy understanding and
implementation over achieving the ideal performance on a specific
workload. For example, giving extra resources to a particular job
(e.g., by relaxing fair sharing [2]) may help it speed through a bottle-
neck; understanding the workload can help the scheduler plan ahead
(e.g., anticipate future job arrivals); and setting workload-specific
threshold values can reduce idle resources (e.g., for delay schedul-
ing [6]). However, such workload-specific policies are rarely used in
practice because they require expert knowledge and significant effort
to devise, implement, and validate. We show that modern machine
learning techniques can help avoid this burden by automatically
learning a scheduling policy for a workload and high-level objective
(e.g., minimal average job runtime) without explicit policy input.

Cluster scheduling is a good fit for machine learning: plentiful
training data already exists in the form of monitoring information,
small inaccuracies in decisions are often tolerable, and repetitive
workloads allow comparing different decisions’ goodness. Clotho is
a first step towards using neural networks to learn cluster scheduling
policies from scratch, focusing particularly on batch-oriented par-
allel data analytics jobs. To achieve this, we had to devise (i) new
representations of the cluster state appropriate for learning, (ii) new
training techniques to deal with complex, graph-shaped inputs rep-
resenting data-parallel jobs, and (iii) a model that combines global
and job-local scheduling decisions, and accurately represents the
behavior of a real-world data-parallel processing framework. Unlike
other research projects — e.g., for learning multi-dimensional re-
source packing [3], or for learning device placement for TensorFlow
workloads [4] — Clotho learns complete, complex policies purely
from experience and observations of the cluster state.

State

Job DAG 1 Job DAG n

Executor 1 Executor m

Scheduling Agent
p[Policy

Network
State

embedding

Environment
Schedulable

Nodes
objective

Reward

Observation of jobs and cluster status

NA

Figure 1: Clotho uses reinforcement learning (RL) to train an end-to-end
system for a high-level objective. Its graph-based state embedding combines
DAGs and feeds a policy network that makes the next scheduling decision.

2 Design
Figure 1 shows the overall architecture Clotho uses to learn sched-
uling policies via reinforcement learning: a scheduling agent ob-
serves the state (viz., available jobs and resources) of an environment
(e.g., a Spark cluster). When the cluster state changes, the agent uses
several neural networks to choose an action: either a scheduling
decision or doing nothing. The action affects the environment, and
Clotho uses a high-level objective specified by the cluster admin-
istrator (e.g., minimize average job completion time) to compute a
reward that the agent receives for the chosen action. Actions bet-
ter aligned with the objective yield higher rewards, and the neural
networks consequently learn to reinforce them.
Cluster state representation. Data-parallel jobs are usually di-
rected acyclic graphs (DAGs) in which each node represents an
operation split into parallel tasks, and each edge represents data de-
pendencies and shuffles between operations. DAGs must execute in
topological order, i.e., subsequent nodes cannot start until all parent
nodes are finished. A cluster runs multiple DAGs of different jobs
concurrently, sharing executor slots between them.1 The scheduler
decides on how to divide executor slots between DAGs, but also
what topological order to choose, and how to split executors within
each DAG. Figure 2 illustrates how the DAGs of Spark jobs that
implement TPC-H queries vary in shape, task duration, and number
of tasks per node (i.e., the maximum degree of parallelism).

We developed a new graph embedding technique to transform
job DAGs into a continuous vector-space, which enables learning
scheduling policies for such jobs with neural networks. The idea is
to embed the DAG information in per-node vectors [1], which the
neural networks use to compute a probability of scheduling each
node. The embedding consists of two main steps: (i) aggregating
local information at each node from its children (Fig. 3a), and (ii)
summarizing global information across all nodes (Fig. 3b). Addition-
ally, Clotho appends external, non-DAG information (e.g., executor
status) to the vector representation that it feeds to the policy network.
DAG-level message passing. Each DAG node has associated infor-
mation such as the number of unfinished tasks, number of running

1As per Spark terminology, “executors” are parallel workers that process tasks from
DAG nodes in a particular job; Clotho currently assumes that a cluster has a fixed
number of statically-sized executor slots that it multiplexes between jobs.

SysML’18, February 2018, Stanford, California, USA H. Mao et al.

1 50 100
1 5 10 201 50 100 200Number of tasks Duration (sec) Data shuffle (MB)

Query 16 Query 19 Query 20Query 7

Query 1

Query 6

Figure 2: Data-parallel jobs have complex data-flow graphs like the ones
shown (TPC-H queries in Spark), with each node having a distinct task
duration distribution, number of tasks, and input/output size.

Job DAG 1

Job DAG n

s=0 s=1 s=2

(a) DAG-level message passing.

Job DAG n

Job DAG 1

DAG level
summary

global level
summary

(b) Global summarization.

Figure 3: Clotho’s graph embedding combines information from each DAG
and across DAGs into a tensor with one vector per node, DAG, and globally.

tasks, average task runtime (if known), etc. Our embedding captures,
for each node, the information for that node and all its descendants.
We compute this embedding by propagating information through the
DAG using a sequence of parameterized message passing steps, from
the leaves to the roots. Initially, each node i has a vector x0i with that
node’s information. At step s of message passing, nodes aggregate
information (“messages”) from their children by performing

xs+1i = д



∑
j ∈ξ (i)

f (xsj)

+ xsi , (1)

where f (·) and д(·) are non-linear transformations over vector inputs
expressed using neural networks, and ξ (·) denotes the set of children
for a node. This rule is expressive enough to capture a wide variety of
aggregation functions. For example, if f and д are identity functions,
they sum the childrens’ vectors; if f ∼ log(·/n), д ∼ exp(n × ·), they
take the maximum of the child vectors (for large n). As the domain
and range of f (·) and д(·) do not depend on the DAGs themselves,
the same transformations can be applied to DAGs of any scale.

Global summarization. Besides information obtained with local
message passing, we also aggregate information across all nodes
in each DAG, and across all DAGs. This information is useful for
learning policies that require global information, such as comparing
the total work in different DAGs. We compute these summaries using
the same message passing mechanism via two new node types: DAG-
level summary nodes (squares in Fig. 3b) and a global summary node
(the triangle in Fig. 3b). DAG-level summary nodes are a parent to
all the nodes in their DAG, and the global summary node is a parent
to all DAG-level summary nodes. Each level of summarization has
its own set of parametrized non-linear functions f (·) and д(·).

Learning, avg. completion time: 31.45 sec

Critical path, avg. completion time: 42.08 sec

Time

Ex
ec
ut
or
s

Ex
ec
ut
or
s

(a) average completion time

Learning, makespan: 64.16 sec

Greedy packing, makespan: 76.34 sec

Time

Ex
ec
ut
or
s

Ex
ec
ut
or
s

(b) makespan

Figure 4: Clotho outperforms to two heuristics optimized for average com-
pletion time (critical path) and makespan (greedy packing). The x -axis covers
80 seconds in all figures, and earlier job completion (red lines) is better.

3 Preliminary Results
Our early results are promising. In simulations with random mixes of
TPC-H queries, Clotho outperforms both Spark’s default scheduling
policy and purpose-built heuristics for objectives like minimizing
average job completion time or makespan (the time to complete
the last job). In the examples shown in Figure 4, we sampled 10
DAGs from the TPC-H queries and schedule them over 100 executor
slots. Different colors represent different jobs, with vertical red lines
indicating job completions. Dark purple color indicates idle periods
of executors. Clotho learns entirely different policies for the two
objectives: for makespan, it packs jobs tightly to keep executors busy
and finishes all jobs in the final ten seconds; for average completion
time, it correctly prioritizes shorter jobs for earlier completion.

Generalization. Clotho appears to learn policies that generalize
across varying input sizes to jobs (and consequent changes to task
durations) and varying cluster size (i.e., executor slot count). In our
experiments, Clotho’s performance degrades only by 5–10% if one
of these factors changes drastically (e.g., from a 5 GB input size to a
100 GB input size, or 50 to 100 executor slots).

Integration with Spark. We have integrated Clotho as a pluggable
scheduler into Spark. Whenever the set of runnable “stages” (DAG
nodes) in a Spark job changes, it invokes the Clotho service, which
may decide to move executors between jobs, or to change the distri-
bution of stages’ tasks to executors. Initial experiments indicate that
real Spark performance matches the Clotho simulations.

Next steps. We are investigating whether training Clotho on offline
logs in simulation yields models that work well on real clusters,
and whether we can continue training safely in a running cluster
after deployment. Clotho will also need the ability to classify new,
unseen cluster behavior at runtime to make better decisions; and
Clotho will need to understand mixed workloads with long-running
jobs that have different objectives than batch jobs. We also hope to
look into whether other systems — e.g., query optimizers, compilers,
or database management systems [5] — can use our embedding
techniques to learn workload-specific policies.

References
[1] Hanjun Dai, Elias B. Khalil, Yuyu Zhang, Bistra Dilkina, and Le Song. 2017. Learn-

ing Combinatorial Optimization Algorithms over Graphs. CoRR abs/1704.01665

Learning Graph-based Cluster Scheduling Algorithms SysML’18, February 2018, Stanford, California, USA

(2017). http://arxiv.org/abs/1704.01665
[2] Robert Grandl, Srikanth Kandula, Sriram Rao, Aditya Akella, and Janardhan Kulka-

rni. 2016. Graphene: Packing and dependency-aware scheduling for data-parallel
clusters. In Proceedings of the 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI). 81–97. https://www.usenix.org/system/files/
conference/osdi16/osdi16-grandl-graphene.pdf

[3] Hongzi Mao, Mohammad Alizadeh, Ishai Menache, and Srikanth Kandula. 2016.
Resource Management with Deep Reinforcement Learning. In Proceedings of
the 15th ACM Workshop on Hot Topics in Networks (HotNets). 50–56. https:
//doi.org/10.1145/3005745.3005750

[4] Azalia Mirhoseini, Hieu Pham, Quoc V Le, Benoit Steiner, Rasmus Larsen, Yuefeng
Zhou, Naveen Kumar, Mohammad Norouzi, Samy Bengio, and Jeff Dean. 2017.
Device Placement Optimization with Reinforcement Learning. In Proceedings
of the 34th International Conference on Machine Learning (ICML). 2430–2439.
https://arxiv.org/pdf/1706.04972.pdf

[5] Andrew Pavlo, Gustavo Angulo, Joy Arulraj, Haibin Lin, Jiexi Lin, Lin Ma,
Prashanth Menon, Todd Mowry, Matthew Perron, Ian Quah, Siddharth Santurkar,
Anthony Tomasic, Skye Toor, Dana Van Aken, Ziqi Wang, Yingjun Wu, Ran Xian,
and Tieying Zhang. 2017. Self-driving Database Management Systems. In Proceed-
ings of the 8th Biennial Conference on Innovative Data Systems Research (CIDR).
http://cidrdb.org/cidr2017/papers/p42-pavlo-cidr17.pdf

[6] Matei Zaharia, Dhruba Borthakur, Joydeep Sen Sarma, Khaled Elmeleegy, Scott
Shenker, and Ion Stoica. 2010. Delay Scheduling: A Simple Technique for
Achieving Locality and Fairness in Cluster Scheduling. In Proceedings of the
5th European Conference on Computer Systems (EuroSys). 265–278. https:
//doi.org/10.1145/1755913.1755940

http://arxiv.org/abs/1704.01665
https://www.usenix.org/system/files/conference/osdi16/osdi16-grandl-graphene.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-grandl-graphene.pdf
https://doi.org/10.1145/3005745.3005750
https://doi.org/10.1145/3005745.3005750
https://arxiv.org/pdf/1706.04972.pdf
http://cidrdb.org/cidr2017/papers/p42-pavlo-cidr17.pdf
https://doi.org/10.1145/1755913.1755940
https://doi.org/10.1145/1755913.1755940

	1 Introduction and Motivation
	2 Design
	3 Preliminary Results
	References

