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ABSTRACT

The process of deploying machine learnt models to produc-
tion systems can be difficult, time consuming, and prone to
many engineering and data-related risks. Here, we present
Alohal, a model representation framework that mitigates
many of these risks. In Aloha, feature expansion and re-
porting are subsumed within the model boundary, allowing
Aloha to read user-defined, rather than framework-defined
data types, which eases integration in preexisting engineer-
ing pipelines. Aloha’s reporting functionality has a variety of
use cases including data anomaly detection and hierarchical
model output logging. The latter benefit enables simple A/B
testing and is also useful in classification scenarios when
offline analysis on raw model scores is desirable. Feature
expansion and reporting are performed non-strictly to avoid
unnecessary computation.

1 INTRODUCTION

The difficulty of deploying and maintaining machine learn-
ing (ML) pipelines to create and quickly productionalize
models is often a stumbling block to those wishing to make
an investment in ML. Getting even simple, more well un-
derstood models such as linear models [32], decision trees
[4], and boosting models [9] into production can be a high
cost endeavor. Many of the common pitfalls are outlined by
Sculley et al. [25].

At the heart of many of these problems is a fundamental
difference in the domains on which data scientists and en-
gineers operate. Data scientists utilize many ML packages
operating on library-specific representations of features,
typically encoded as tensors. These representations are
often transformed and flattened views of structured data.
Data engineers are responsible for supplying data to var-
ious teams within an organization and they may prefer to
store, retrieve, and operate on structured data as is evi-
denced with the proliferation of NoSQL databases [30] like
MongoDB [7], Cassandra [20] and Redis [5].

To complicate matters further, data requirements vary
between teams serviced by data scientists. This can be
compounded by organizational fragmentation. To facilitate
the use of ML models in such environments, a principled
methodology for interacting with models is imperative. A
common strategy is to wrap models in microservices. In
systems that use batch processing, this can be difficult to
scale. To overcome these cases, model exchange formats
like PMML [11], PFA [24] and ONNX [3] can be used. The
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benefit of these frameworks, as Bird et al. [3] point out,
is that an intermediate representation (IR) for models de-
creases the complexity of the model translation problem
from O(M?) to O(M), where M is the number of ML pack-
ages.

Aloha is a framework that acts less as an intermediary
between multiple ML packages, like ONNX, and more like a
bridge between data representations and ML packages. So,
analogously, given N input data representations, K output
data representations and, M ML packages, Aloha decreases
complexity of applying ML packages to data representa-
tions from an O(NMK) problem to an O(N + M + K) problem
through its use of an IR. This is not a novel idea in ML.
Many ML packages implement multiple algorithms with
diverse structure through a canonical data representation.
WEKA provided this functionality over two decades ago
[13]. Instead of introducing another data representation,
Aloha’s representation is a pair of descriptions for extract-
ing and transforming data from a desired model domain and
exporting predictions to a desired codomain. Users create
descriptions of features and output transformations that are
applied non-strictly. For wrapped black-box ML packages,
Aloha applies these at the model boundary of the wrapped
model. For models implemented natively in Aloha, feature
expansion and output transformation is more tightly inte-
grated to promote non-strictness, which is useful in decision
trees and anytime algorithms.

2 RELATED WORK

Many ML packages provide features found in Aloha. Tensor-
Flow [1] supports many algorithms, allows feature expan-
sion inside model definitions, and has control flow to skip
subgraph computations. During inference, a typical pattern
is to transform input maps of name-feature list pairs to
internal tensor representation via dataset-specific callbacks
[28].

Uber’s internal ML platform, Michelangelo [12], wraps
many ML packages including MLLib [23], XGBoost [6], and
TensorFlow and includes a domain specific language (DSL)
for feature selection and transformation, implemented as
sub-set of Scala [27]. Michelangelo is currently closed-
source and details of its data representation or DSL have
not, to the best of the authors’ knowledge, been disclosed
publicly.

Amazon’s SageMaker [17], like Michelangelo, delegates
learning and inference to its supported ML packages. Sage-

Maker supports multiple input formats; however, each wrapped



ML package supports a different subset of such formats [16].
Supporting multiple input formats makes it easy to wrap
additional ML packages, but may be onerous to callers who
must coordinate between input formats during inference
calls [18]. Training data for SageMaker must exist on Ama-
zon’s S3 storage and be in an ML package-specific format.
If data already stored on S3 has an incompatible format, an
extract, transform, load (ETL) process is needed to write
data back to S3 [19].

3 ARCHITECTURE

Aloha provides a specification format for dataset generation
and model inference and interpreters to build ML pipelines.
At train time, Aloha’s dataset generation functionality trans-
forms data with user-defined schemas to the input format of
a wide variety of ML frameworks. Aloha’s feature expansion
DSL is based on Scala and supports the use of arbitrary
user-defined functions. Once a dataset is produced and a
model is trained, the trained model along with the feature
specifications are embedded in a model specification that is
interpreted to create an Aloha model used for inference.

Aloha supports a variety of model types including native
support for linear models, decision trees, and decision trees
with other submodels at the nodes. Decision trees of sub-
models allow granular reporting; data can be tracked as it
passes through each submodel. Aloha also wraps other ML
packages including Vowpal Wabbit [21] (VW) and H20.ai
[26]. Listing 1 shows an Aloha model specification that
wraps a VW model.

{ "modelType":"VwINI",
"modelId": { "id": 1, "name": "title model" },

"vw": { "params": "-t --quiet",
"modelUrl": "s3://bucket/abcl23.vw", "via": "vfs2" },
"features": { "title": ‘"“skipGrams(${text.title}, n=2, k=1)",
"n_tags": "${tags}.length" },
"namespaces": { "A": ["title"], "B": ["n_tags"] }

}

Listing 1: Sample Aloha VW model specification

Wrapped models can be imported from an external source
as in Listing 1 or defined inline. Metaparameters are pro-
vided for the configuration of the wrapped model. Perhaps
more importantly, variables are encoded using quasiquota-
tion [2] and types are omitted from feature definitions, yet
strong, static typing is employed.

When a model specification is interpreted, type infor-
mation about the feature expansion functions is merged
with type information about the input. Type inference aids
proper typing without the need for explicit type annotations.
Data extraction and transformation are decoupled. Given
a feature specification defined in terms of one variable U,
a data extractor function u : X — U is created along with
an aggregator a : U — B. The feature expansion function
is then fi : X — B defined as fi(x) = a(u(x)). Higher arity
functions can be defined similarly, e.g., fa(x) = a(u(x), v(x)).

As data is extracted from the input, missing and anomalous
data are aggregated by the model and possibly returned
along with the model prediction.

When a model interpreter is created, an auditor is sup-
plied to establish the prediction format and diagnostic in-
formation to be returned by the model. Examples include
returning a single scalar prediction with no diagnostics, to
returning a typed tree of model and submodel predictions
with model identifier information and diagnostics about
missing features and anomalies encountered during infer-
ence. The former might be applicable for batch jobs whereas
the latter is appropriate when more detail is desirable, e.g.,
in asynchronous fire-and-forget architectures [33].

4 USE CASES

Aloha’s non-strict feature expansion is an asset when CPU
costs are constrained during inference as in Xu et al. [31].
Prediction with constrained CPU costs has also been con-
sidered for linear models [15], boosting [10] and neural
networks [14].

Decision trees of submodels have also been used to silo
models trained on mutually exclusive datasets, where clas-
sification based on certain features is disallowed by law in
particular locales. Here, strict feature expansion leads to
wasted computation in locales where those features cannot
be used.

Aloha supports O(1) pseudo-random splits in decision
trees and sampling from categorical distributions via salted
hashing, which has been used for A/B testing and explo-
ration in discrete action spaces [22]. In these situations,
Aloha’s auditing capability is important for recording which
submodel generated the prediction. Since auditing is per-
formed inside the model, the only configuration change
needed is the type of auditor supplied to the model inter-
preter.

5 DISCUSSION

Aloha supports a number of protocol-based serialization
formats including Protocol Buffers [29] and Avro [8] and
consumes data with user-defined schemas. It wraps black-
box ML packages and includes native models to promote
non-strictness. Finally, it has flexible support for returning
various amounts of diagnostics along with predictions.

By subsuming feature expansion and reporting inside the
model boundary, Aloha avoids a canonical data representa-
tion at the API level but provides much of the benefit. Users
are able to provide and consume their own desired data
types and data is extracted and transformed only as needed,
which facilitates the use of anytime algorithms in which fea-
ture expansion should be performed parsimoniously. Since
input types, ML packages and auditors are decoupled, it
is easy to add implementations of any of the components
without affecting the others.
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