
Abstractions for Containerized Machine Learning Workloads in
the Cloud

Balaji Subramaniam, Niklas Nielsen, Connor Doyle, Ajay Deshpande, Jason Knight, Scott Leishman
Intel Corporation

balaji.subramaniam@intel.com

1 INTRODUCTION AND MOTIVATION
Many institutions rely on Machine Learning (ML) to meet their
goals. ML workloads are computationally intensive and as a result
there is an investment in accelerators [2, 9] such as ASICs, FPGAs
and GPUs to improve their performance. At the same time, these
institutions are increasingly adopting cloud infrastructure with
containers gaining traction relative to virtual machines [14, 17].

Designing, implementing and maintaining a system to support
ML workloads in a cloud infrastructure with containers that takes
resource management into account poses significant challenges.
However, what data scientists desire is the flexibility to implement
new models and research new ML techniques without having to
spend a lot of time managing the underlying platforms and infras-
tructure. Based on our engagements, we find that they want the
following features:

1.1 Layered Abstractions
A fundamental tension arises when designing abstractions for data
scientists. On one end of the spectrum, they are satisfied to work
with high level, general purpose tooling, pipelines, and workflow
configuration. But on the other end, such general purpose abstrac-
tions can restrict, rather than enhance their workflow. Instead, data
scientists want layered abstractions such that that the underlying
primitives can be manipulated directly when necessary.

1.2 Flexible Configuration
A data scientist wanting to run an ML task in the cloud using
containers needs to package their experiment in one ormore images,
push that to a registry, create and run theML task, and thenmonitor
and potentially troubleshoot its execution. Today, this requires an
understanding of the inner-workings of the infrastructure and the
container orchestration system itself. As such, there is a high bar
for entry and opens up a large surface area for mistakes. We strive
to make this process easier for data scientists by providing a set of
higher-level APIs that use sensible defaults and appropriate hooks
for cluster operators to dictate behavior. Based on the specifications
provided by a data scientist, the definition of new job types and
their use should be seamless.

1.3 Data Management
ML training tasks are characterized by learning from input data.
Given the volume that is typically accessed, data scientists separate
their code from this data and instead attach it to their jobs in a
declarative fashion at runtime using the scheduling system. Some

SysML’18, February 2018, Stanford, CA
2018. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

tasks require this data to be duplicated across jobs, as in hyper-
parameter sweeps, or partitioned across nodes, as in distributed
training. Additionally, these datasets are often curated dynamically
via SQL queries, user specified code, or generated as the output of
prior machine learning or preprocessing steps. Additional data man-
agement requirements include ease of use, resiliency to failures, and
performance optimizations. Example optimizations include sched-
uling ML tasks on compute resources where the data is already
available (data affinity) and pre-populating data on the compute
resources if required (data caching).

1.4 Performance Enhancements
In order to extract maximal performance out of a given compute
resource, optimizations such as CPU isolation and pinning, NUMA
awareness and device locality are required [12, 15, 16]. These op-
timizations are also expected to be performed without much in-
volvement from the end user. While these optimizations have been
studied and used in high-performance computing (HPC), they are in
nascent stages of adoption and implementation in cloud container
orchestrators.

2 BUILDING BLOCKS IN SUPPORT OF DATA
SCIENTISTS

To address some of the aforementioned challenges and require-
ments, we describe our efforts to design, implement and maintain
an end-to-end ML system built on top of Kubernetes [10, 13]. Ku-
bernetes uses a declarative state model to drive objects (e.g. Pods,
Services, Namespaces) from their current state to their desired
state, and ultimately execute containerized workloads. The current
state and the desired state are represented in the Status and Spec
of each object, respectively. To accomplish this, Kubernetes uses a
set of high-level abstractions called Controllers (e.g. Deployment,
DaemonSet, Job) which can detect and act on state differences
in basic objects. As an example, a Pod’s definition is considered a
declaration of its Spec, but when first created its current Status
will not match its Spec and so the Controller will carry out tasks
like downloading the container image to converge towards the
desired state.

In rest of this paper, we present our work to support data scien-
tists using the following abstractions:

2.1 Definition of ML Job Types
We use Custom Resource Definitions (CRDs) and custom con-
trollers [5, 7] to allow for the definition of new ML job types in
Kubernetes. CRDs enable extending Kubernetes with new objects.
With CRDs, the new ML job types can be created and managed like
any other native Kubernetes objects. It acts as a base from which
layered abstractions can be built for data scientists.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

SysML’18, February 2018, Stanford, CA B. Subramaniam et al.

We have designed and developed a unified framework for the
definition and maintenance of newML job types in Kubernetes. The
goal is to provide a mechanism for seamless definition of new ML
job types with minimal code changes. Towards this goal, we make
the following contributions: unifying custom controller logic, defin-
ing new job types and their subresources via templates, and pro-
viding abstractions to interact with CRDs and their subresources.

In order to unify the custom controller logic, we have defined a
unified state machine that allows for the definition of state transi-
tion across various ML job types. A unified state machine enables
us to develop a single reconciliation mechanism to drive towards
the desired state specified in the CRD of an ML job. The reconciler
periodically inspects the desired and the current state of the ML
jobs and their associated sub-resources and takes action if required.
The reconciler also performs garbage collection when necessary
(e.g., delete orphaned Pods originally created by an ML job via
CRD).

2.2 Performance Enhancements
As mentioned earlier data scientists want to extract the best perfor-
mance out of the infrastructure without worrying too much about
the details.

In Kubernetes, the CPU manager [3, 4] component was intro-
duced to enable CPU pinning and isolation. Kubernetes can en-
force CPU limits using CFS shares. However, better isolation helps
performance in some cases where the containerized workload is
affected by factors such as cache affinity, device locality and context
switches. The CPU manager assigns exclusive CPUs to containers
using the cpuset cgroup controller. Exclusive CPUs are only granted
for certain resource request parameter combinations. Additional
defaulting for resource request fields in job submissions would fur-
ther shield data scientists from these details while ensuring good
performance for sensitive tasks.

Performance optimizations related to NUMA have been well
studied and used in the HPC community. This requires coordination
between assignment of different resources such as CPU, acceler-
ator devices and network devices. However, in Kubernetes, these
resources are handled by disjoint components. Enabling NUMA
awareness in Kubernetes requires coordination between multiple
components. We are involved in the efforts [8] to enable NUMA
awareness in Kubernetes.

Only a few resources are supported natively by Kubernetes. But
new accelerators such as FPGAs, ASICs and GPUs are emerging in
the market to support growing needs of ML workloads. However, it
is not feasible to add support for every accelerator natively in Kuber-
netes as the mechanism to enable these devices will be vendor and
device specific. In Kubernetes, the device plugin component [1, 6]
was introduced to allow for the support, maintenance and monitor-
ing of devices without adding vendor and device specific details in
the Kubernetes core components.

2.3 Data Management
Distributed storage is a large research area and one filled with many
complexities such as fault tolerance, performance optimizations
and user interfaces. Our approach to addressing this is to leverage
Kubernetes CRDs to enable a flexible interface to the storage system

that can expand over time as functionality is added. The flex volume
plugin [11] is used as the initial backing store to implement the
desired states described by the CRD specification. Users can request
storage through this CRD and how those declarations impact their
job scheduling and execution.

The specification of the CRD will allow the data scientists to
dynamically define the dataset used with their ML tasks and distrib-
ute it based on the type of ML task (e.g., hyper-parameter sweep
or distributed training). The controller will be responsible for de-
tecting if the data requirements of an ML job is satisfied when the
job is scheduled on a compute node and take appropriate actions.
These actions include fetching the data if required and providing
that data as a volume to the container and optionally labeling the
node indicating the presence of that data. The label can be used in
the future to provide data affinity. The controller will also perform
garbage collection (e.g., evict data to make space), when required.

3 CONCLUSION AND FUTUREWORK
ML is gaining increasing applicability and are among the most
important class of workloads. In this paper, we described our efforts
to support ML workloads in a containerized environment. Based on
our engagement with data scientists, we presented abstractions to
address some of the challenges and requirements that data scientists
face in working with containerized environments.

Many interesting challenges remain. Accommodating the needs
of data scientist at the pace in which the ML community is growing
requires flexibility. Any new feature addition requires changes to
multiple abstractions. We are actively working on including new
abstraction to support data scientists. An example is distributed job
scheduling to support multi-node jobs (e.g., distributed training).
In HPC, scheduling techniques such as gang scheduling have been
studied and extensively used. However, there is a desire to use HPC-
like scheduling patterns in cloud-native container orchestration
system to schedule and compute distributed ML tasks. In existing
systems like Kubernetes, extensions are required to support this
requirement.

REFERENCES
[1] 2017. Device Manager Proposal. (2017). https://github.com/

kubernetes/community/blob/master/contributors/design-proposals/
resource-management/device-plugin.md

[2] 2017. US Coalesces Plans for First Exascale Supercomputer: Au-
rora in 2021. (Sept. 2017). https://www.hpcwire.com/2017/09/27/
us-coalesces-plans-first-exascale-supercomputer-aurora-2021/

[3] 2018. Control CPU Management Policies on the Node. (2018). https://kubernetes.
io/docs/tasks/administer-cluster/cpu-management-policies/

[4] 2018. CPUManagement Design Proposal. (2018). https://github.com/kubernetes/
community/blob/master/contributors/design-proposals/node/cpu-manager.md

[5] 2018. Custom Resources. (2018). https://kubernetes.io/docs/concepts/
api-extension/custom-resources/

[6] 2018. Device Plugins. (2018). https://kubernetes.io/docs/concepts/
cluster-administration/device-plugins/

[7] 2018. Extend the Kubernetes API with CustomResourceDefini-
tions. (2018). https://kubernetes.io/docs/tasks/access-kubernetes-api/
extend-api-custom-resource-definitions/

[8] 2018. Hardware topology awareness at node level (including NUMA) Issue #49964
kubernetes/kubernetes. (2018). https://github.com/kubernetes/kubernetes/
issues/49964

[9] 2018. Intel Invests $1 Billion in the AI Ecosystem to Fuel Adoption
and Product Innovation. (2018). https://newsroom.intel.com/editorials/
intel-invests-1-billion-ai-ecosystem-fuel-adoption-product-innovation/

[10] 2018. Kubernetes Documentation. (2018). https://kubernetes.io/docs/home/
[11] 2018. Volumes. (2018). https://kubernetes.io/docs/concepts/storage/volumes/

https://github.com/kubernetes/community/blob/master/contributors/design-proposals/resource-management/device-plugin.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/resource-management/device-plugin.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/resource-management/device-plugin.md
https://www.hpcwire.com/2017/09/27/us-coalesces-plans-first-exascale-supercomputer-aurora-2021/
https://www.hpcwire.com/2017/09/27/us-coalesces-plans-first-exascale-supercomputer-aurora-2021/
https://kubernetes.io/docs/tasks/administer-cluster/cpu-management-policies/
https://kubernetes.io/docs/tasks/administer-cluster/cpu-management-policies/
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/node/cpu-manager.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/node/cpu-manager.md
https://kubernetes.io/docs/concepts/api-extension/custom-resources/
https://kubernetes.io/docs/concepts/api-extension/custom-resources/
https://kubernetes.io/docs/concepts/cluster-administration/device-plugins/
https://kubernetes.io/docs/concepts/cluster-administration/device-plugins/
https://kubernetes.io/docs/tasks/access-kubernetes-api/extend-api-custom-resource-definitions/
https://kubernetes.io/docs/tasks/access-kubernetes-api/extend-api-custom-resource-definitions/
https://github.com/kubernetes/kubernetes/issues/49964
https://github.com/kubernetes/kubernetes/issues/49964
https://newsroom.intel.com/editorials/intel-invests-1-billion-ai-ecosystem-fuel-adoption-product-innovation/
https://newsroom.intel.com/editorials/intel-invests-1-billion-ai-ecosystem-fuel-adoption-product-innovation/
https://kubernetes.io/docs/home/
https://kubernetes.io/docs/concepts/storage/volumes/

Abstractions for Containerized Machine Learning Workloads in the Cloud SysML’18, February 2018, Stanford, CA

[12] Akhil Arunkumar, Evgeny Bolotin, Benjamin Cho, Ugljesa Milic, Eiman Ebrahimi,
Oreste Villa, Aamer Jaleel, Carole-Jean Wu, and David Nellans. 2017. MCM-GPU:
Multi-Chip-Module GPUs for Continued Performance Scalability (ISCA ’17). ACM,
New York, NY, USA, 320–332. https://doi.org/10.1145/3079856.3080231

[13] Brendan Burns, Brian Grant, David Oppenheimer, Eric Brewer, and John Wilkes.
2018. Borg, Omega, and Kubernetes. Commun. ACM 59, 5 (April 2018), 50–57.
https://doi.org/10.1145/2890784

[14] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio. 2015. An updated performance
comparison of virtual machines and Linux containers. In 2015 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS). 171–172.
https://doi.org/10.1109/ISPASS.2015.7095802

[15] Baptiste Lepers, Vivien Quema, and Alexandra Fedorova. 2015. Thread and
Memory Placement on NUMA Systems: Asymmetry Matters (USENIX ATC ’15).
USENIX Association, Berkeley, CA, USA, 277–289. http://dl.acm.org/citation.
cfm?id=2813767.2813788

[16] Ugljesa Milic, Oreste Villa, Evgeny Bolotin, Akhil Arunkumar, Eiman Ebrahimi,
Aamer Jaleel, Alex Ramirez, and David Nellans. 2017. Beyond the Socket: NUMA-
aware GPUs (MICRO-50 ’17). ACM, New York, NY, USA, 123–135. https://doi.
org/10.1145/3123939.3124534

[17] Prateek Sharma, Lucas Chaufournier, Prashant Shenoy, and Y. C. Tay. 2016.
Containers and Virtual Machines at Scale: A Comparative Study (Middleware ’16).
ACM, New York, NY, USA, 1:1–1:13. https://doi.org/10.1145/2988336.2988337

https://doi.org/10.1145/3079856.3080231
https://doi.org/10.1145/2890784
https://doi.org/10.1109/ISPASS.2015.7095802
http://dl.acm.org/citation.cfm?id=2813767.2813788
http://dl.acm.org/citation.cfm?id=2813767.2813788
https://doi.org/10.1145/3123939.3124534
https://doi.org/10.1145/3123939.3124534
https://doi.org/10.1145/2988336.2988337

	1 Introduction and Motivation
	1.1 Layered Abstractions
	1.2 Flexible Configuration
	1.3 Data Management
	1.4 Performance Enhancements

	2 Building Blocks in Support of Data Scientists
	2.1 Definition of ML Job Types
	2.2 Performance Enhancements
	2.3 Data Management

	3 Conclusion and Future Work
	References

