
Robust Gradient Descent via Moment Encoding with LDPC
Codes

Extended Abstract

Raj Kumar Maity
UMass Amherst
Amherst, MA

rajkmaity@cs.umass.edu

Ankit Singh Rawat
MIT and UMass Amherst

Cambridge and Amherst, MA
asrawat@mit.edu

Arya Mazumdar
UMass Amherst
Amherst, MA

arya@cs.umass.edu

ABSTRACT
In this paper, we consider the problem of implementing large-scale
gradient descent algorithms in a distributed computing setting in
the presence of straggling processors (stragglers). To mitigate the
effect of the stragglers, it has been previously proposed to encode
the data with an erasure-correcting code and decode at the master
server at the end. In this work, instead, we propose to encode
the second-moment of the data with an iteratively decodable low
density parity-check (LDPC) code. To analyze our scheme, we show
that for a randomized model for stragglers the gradient descent
method with the proposed moment-encoding based setup can be
viewed as stochastic gradient descent. This leads to a convergence
guarantee for our gradient descent algorithm. On the other hand,
iterative decoding methods of LDPC codes come with very low
computational overhead and the number of decoding iterations
can be made to automatically adjust with the number of stragglers
present. We have implemented the proposed moment-encoding
method, and it outperforms the previously proposed schemes in a
real distributed computing setup.

1 CODED DISTRIBUTED COMPUTATION
As a general principle, large scale distributed computing setups
(e.g., [5, 18]) divide the original problem at hand into many small
tasks, which are then assigned to many computing servers, namely
workers. The master server collects the outcomes of local com-
putation at the workers (potentially over multiple rounds) and
computes the final result. In large scale practical systems, this pro-
cess of collecting the outcomes from the workers is usually prone to
unpredictable delays [4]. Such delays arise due to various reasons,
including the slow-down at worker servers and the congestion
present in the communication networks among the servers in the
system. The workers that are not able to provide the outcome of
their local computation within a reasonable deadline due to these
delays are termed stragglers. The presence of the stragglers can
significantly degrade the performance of the system. Therefore, it
becomes critical to address the variability in the response times of
different components of the computing setup during the design of
the computational tasks.

The problem of mitigating the effect of stragglers has been ex-
plored in many recent works. The replication schemes assign each
task to multiple servers [1, 14, 16]. This ensures that the task gets
completed without significant delay if at least one of the servers
processing the task is non-straggler. In [9], Lee et al. explored cod-
ing theoretic ideas that went beyond the replication schemes in
order to address the issue of straggling servers. They focus on linear

computation, such as the product of matrix A with vector x, and
propose to encode the columns of A by a maximum distance sepa-
rable (MDS) code to obtain a taller encoded matrix. The rows of the
encoded matrix are distributed among workers, that are responsible
for computing the inner product of the rows assigned to them with
x. The redundancy among the rows of the encoded matrix allows
for computation of Ax even if some of the servers fail to respond
with the computation assigned to them. In [6], Dutta et al. further
explore the problem of reliably computing a matrix-vector prod-
uct with the additional requirement that the rows of the encoded
matrix are sparse. This is motivated by the objective of reducing
the computation at the workers and communication between the
master and the workers which scales with the row-sparsity of the
encoded matrix. The similar ideas for other computational tasks
(e.g., matrix-matrix product and convolution between vectors) have
been explored in [2, 7, 10, 17]. Another line of work that addresses
the issue of minimizing the amount of communication during data
shuffling using coding techniques, both with and without stragglers,
is presented in [9, 11–13] and reference therein.

In [9], Lee et al. also focus on performing iterative gradient de-
scent procedure in a distributed manner via repeatedly invoking
their solution for coded computation of matrix-vector product. In
this paper, we also rely on coded computation of matrix-vector
product. However, we encode the second moment matrix as op-
posed to the plain data matrix, as done in [9]. This leads to reduced
communication rounds. Furthermore, this also makes the analysis
of the optimization procedure completely different from that in
[9]. As another novel contributions, we utilize LDPC codes which,
as discussed above, allow for both efficient decoding and control
over the quality of the (approximate) gradient computed in each
step of the optimization procedure. In [8], Karakus et al. also study
the problem of recovering the model parameters of a linear model
by solving an alternative optimization problem where both data
points and their labels are encoded by the matrices with maximal
(pairwise) incoherent columns. Again, our approach differs from
theirs as we solve the original optimization problem itself and rely
on moment encoding as opposed to data encoding.

2 METHODOLOGY AND MAIN RESULTS
We consider two simple problems of fitting a linear model to the
given data: linear regression and sparse recovery, and implement
gradient descent algorithm to solve them.

Let’s consider the simple linear regression task where we are
interested in learning a k-dimensional vector θ = (θ1,θ2, . . . ,θk ) ∈



SysML, Feb 2018, Stanford CA USA Raj Kumar Maity, Ankit Singh Rawat, and Arya Mazumdar

200 400 800 1000
0

50

100

150

200

250

300

350

Dimension

N
o

. 
o

f 
it
e

ra
ti
o

n
s

 

 

Uncoded (Data Enc)

2−repetition (Data Enc)

LDPC (Moment Enc)

KSDY17 (Data Enc, Gaussian)

KSDY17 (Data Enc, Hadamard)

(a) Number of Stragglers = 5.

200 400 800 1000
0

50

100

150

200

250

300

350

400

Dimension

N
o

. 
o

f 
it
e

ra
ti
o

n
s

 

 

Uncoded (Data Enc)

2−repetition (Data Enc)

LDPC (Moment Enc)

KSDY17 (Data Enc, Gaussian)

KSDY17 (Data Enc, Hadamard)

(b) Number of stragglers = 10.

200 400 800 1000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Dimension

T
o
ta

l 
C

o
m

p
u
ta

ti
o
n
 T

im
e

 

 

Uncoded (Data Enc)

2−repetition (Data Enc)

LDPC (Moment Enc)

KSDY17 (Data Enc, Gaussian)

KSDY17 (Data Enc, Hadamard)

(c) Number of Stragglers = 5.

200 400 800 1000
0

0.5

1

1.5

2

2.5

Dimension

T
o
ta

l 
C

o
m

p
u
ta

ti
o
n
 T

im
e

 

 

Uncoded (Data Enc)

2−repetition (Data Enc)

LDPC (Moment Enc)

KSDY17 (Data Enc, Gaussian)

KSDY17 (Data Enc, Hadamard)

(d) Number of stragglers = 10.

Figure 1: Total number of iterations and total computation time for solving the linear regression problem(m = 2048).

100 200
0

50

100

150

200

250

Sparsity

N
o

. 
o

f 
it
e

ra
ti
o

n
s

 

 

Uncoded (Data Enc)

2−repetition (Data Enc)

LDPC (Moment Enc)

KSDY17 (Data Enc, Gaussian)

KSDY17 (Data Enc, Hadamard)

(a) Number of Stragglers = 5.

100 200
0

20

40

60

80

100

120

140

160

180

200

Sparsity

N
o

. 
o

f 
it
e

ra
ti
o

n
s

 

 

Uncoded (Data Enc)

2−repetition (Data Enc)

LDPC (Moment Enc)

KSDY17 (Data Enc, Gaussian)

KSDY17 (Data Enc, Hadamard)

(b) Number of stragglers = 10.

100 200
0

0.5

1

1.5

2

2.5

Sparsity

T
o
ta

l 
C

o
m

p
u
ta

ti
o
n
 T

im
e

 

 

Uncoded (Data Enc)

2−repetition (Data Enc)

LDPC (Moment Enc)

KSDY17 (Data Enc, Gaussian)

KSDY17 (Data Enc, Hadamard)

(c) Number of Stragglers = 5.

100 200
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Sparsity

T
o
ta

l 
C

o
m

p
u
ta

ti
o
n
 T

im
e

 

 

Uncoded (Data Enc)

2−repetition (Data Enc)

LDPC (Moment Enc)

KSDY17 (Data Enc, Gaussian)

KSDY17 (Data Enc, Hadamard)

(d) Number of stragglers = 10.

Figure 2: Total number of iterations and computation time for solving the sparse recovery problem in an underdetermined
system (k = 2000, m = 1024).

Rk such that the following total empirical loss function is mini-
mized.

L (θ ) =
1
2
∥y − Xθ ∥22 =

1
2
(
y − Xθ

)T (
y − Xθ

)
=

1
2

m∑
i=1

(
yi − xTi θ

)2
,

where y = (y1,y2, . . . ,ym ) ∈ Rm and X = (x1 x2 · · · xm )T ∈

Rm×k . Here, the gradient of the total empirical loss with respect to
learning parameters θ has the following form.

∇θL (θ ) =
(
XTXθ − XT y

)
. (1)

Note that the term XT y is independent of the optimization param-
eter θ ; as a result, this term needs to be computed only once at the
beginning of the gradient descent based optimization procedure.
By using the notationM = XTX and b = XT y, we can rewrite the
gradient as

∇θL (θ ) = Mθ − b. (2)

Therefore, the t-th step of the gradient descent optimization proce-
dure takes the following form.

θt = θt−1 − ηt∇θL (θt−1) = θt−1 − ηt (Mθt−1 − b), (3)

where θt denotes the estimate of θ at the end of t-th step. Simi-
larly, ηt represents the learning rates during the t-th step of the
optimization procedure.

Now we distribute the task of computing matrix-vector product
Mθt among the worker nodes. We use an LDPC code to encode
the matrixM = XTX . Note that, it is not necessary that the exact
gradient be computed in every step by the master for the gradient
descent algorithm to succeed. Moreover, the LDPC decoder has

very low computation complexity and can automatically adjust
to the number of the stragglers with small number of iteration of
the decoding required if there are not too many stragglers present.
Additionally, we can use the number of decoding iterations as a
tuning parameters. Depending on the number of stragglers, we
can run only those many decoding iterations that are sufficient to
ensure the desirable quality of the estimate of the gradient during
each gradient descent step. For a random model for stragglers,
the gradient descent method with the proposed moment encoding
based setup can be viewed as stochastic gradient descent (SGD)
method. We can use the standard convergence analysis for SGD
method to establish the convergence guarantee for our proposed
solution. The details can be found in the full-version of this paper.

The sparse-recovery problem seeks to find a sparse vector θ
from samples of the form y = Xθ . We employ a gradient-based
method similar to above in conjunction with a hard-thresholding
operation [3] in every step of the optimization procedure to achieve
the goal.

We also conduct a detail performance evaluation of our solution
on a distributed computing cluster (Swarm2) at the University of
Massachusetts Amherst [15]. The obtained performance results
show that the our proposed solution requires smaller number of
gradient steps to converge to the solution of the correct model
parameters. The results are plotted in Figures 1 and 2. We compared
our LDPC based (rate= 1/2) moment-encoding scheme with the
recently proposed data encoding (with MDS/Gaussian matrices)
scheme of Karakus et al. (KSDY17 in the figures) [8], as well as with
uncoded and replication-based schemes (2-replication).



Robust Gradient Descent via Moment Encoding with LDPC Codes SysML, Feb 2018, Stanford CA USA

Acknowledgement:This research is supported byNSFCCF awards
1642658, 1642550 and 1618512.

REFERENCES
[1] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Stoica. 2013. Effective

Straggler Mitigation: Attack of the Clones. In Proceedings of the 10th USENIX
Conference on Networked Systems Design and Implementation (NSDI). USENIX
Association, Berkeley, CA, USA, 185–198. http://dl.acm.org/citation.cfm?id=
2482626.2482645

[2] R. Bitar, P. Parag, and S. E. Rouayheb. 2017. Minimizing latency for secure
distributed computing. In Proceedings of 2017 IEEE International Symposium on
Information Theory (ISIT). 2900–2904.

[3] Thomas Blumensath and Mike E Davies. 2009. Iterative hard thresholding for
compressed sensing. Applied and computational harmonic analysis 27, 3 (2009),
265–274.

[4] J. Dean and L. A. Barroso. 2013. The tail at scale. Commun. ACM 56, 2 (2013),
74–80.

[5] J. Dean and S. Ghemawat. 2008. MapReduce: Simplified Data Processing on Large
Clusters. Commun. ACM 51, 1 (Jan. 2008), 107–113. https://doi.org/10.1145/
1327452.1327492

[6] S. Dutta, V. Cadambe, and P. Grover. 2016. Short-dot: Computing large linear
transforms distributedly using coded short dot products. In Advances in Neural
Information Processing Systems. 2100–2108.

[7] S. Dutta, V. Cadambe, and P. Grover. 2017. Coded convolution for parallel and
distributed computing within a deadline. arXiv preprint arXiv:1705.03875 (2017).

[8] Can Karakus, Yifan Sun, Suhas Diggavi, and Wotao Yin. 2017. Straggler mitiga-
tion in distributed optimization through data encoding. In Advances in Neural
Information Processing Systems. 5440–5448.

[9] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran. 2017.
Speeding Up Distributed Machine Learning Using Codes. IEEE Transactions on
Information Theory PP, 99 (2017), 1–1. https://doi.org/10.1109/TIT.2017.2736066

[10] K. Lee, C. Suh, and K. Ramchandran. 2017. High-dimensional coded matrix
multiplication. In Proceedings of IEEE International Symposium on Information
Theory (ISIT). IEEE, 2418–2422.

[11] S. Li, M. A. Maddah-Ali, and A. S. Avestimehr. 2015. Coded Mapreduce. In
Proceedings of 53rd Annual Allerton Conference on Communication, Control, and
Computing (Allerton). IEEE, 964–971.

[12] S. Li, M. A. Maddah-Ali, and A. S. Avestimehr. 2016. A unified coding framework
for distributed computingwith straggling servers. In Proceedings of IEEE Globecom
Workshops (GC Wkshps). IEEE, 1–6.

[13] S. Li, M. A. Maddah-Ali, Q. Yu, and A. S. Avestimehr. 2017. A fundamental
tradeoff between computation and communication in distributed computing.
IEEE Transactions on Information Theory (2017).

[14] N. B. Shah, K. Lee, and K. Ramchandran. 2016. When Do Redundant Requests
Reduce Latency? IEEE Transactions on Communications 64, 2 (Feb 2016), 715–722.

[15] Swarm2. 2018. SwarmUser Documentation. https://people.cs.umass.edu/~swarm/
index.php?n=Main.NewSwarmDoc. (2018). Accessed: 2018-01-05.

[16] D. Wang, G. Joshi, and G. Wornell. 2015. Using straggler replication to reduce
latency in large-scale parallel computing. ACM SIGMETRICS Performance Evalu-
ation Review 43, 3 (2015), 7–11.

[17] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr. 2017. Polynomial Codes: an Opti-
mal Design for High-Dimensional Coded Matrix Multiplication. arXiv preprint
arXiv:1705.10464 (2017).

[18] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica. 2010. Spark:
Cluster Computing with Working Sets. In Proceedings of the 2Nd USENIX Confer-
ence on Hot Topics in Cloud Computing (HotCloud). USENIX Association, Berkeley,
CA, USA, 10–10. http://dl.acm.org/citation.cfm?id=1863103.1863113

http://dl.acm.org/citation.cfm?id=2482626.2482645
http://dl.acm.org/citation.cfm?id=2482626.2482645
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1109/TIT.2017.2736066
https://people.cs.umass.edu/~swarm/index.php?n=Main.NewSwarmDoc
https://people.cs.umass.edu/~swarm/index.php?n=Main.NewSwarmDoc
http://dl.acm.org/citation.cfm?id=1863103.1863113

	Abstract
	1 Coded Distributed Computation
	2 Methodology and Main Results
	References

