
Buzzsaw: A System for High Speed Feature Engineering
Andrew Stanton and Liangjie Hong and Manju Rajashekhar

Etsy Inc.
117 Adams Street

Brooklyn, NY
{astanton,lhong,mrajashekhar}@etsy.com

ABSTRACT
Feature Engineering is a critical part of machine learning systems.
Most feature engineering solutions focus on a single language or
computational abstraction for their pipelines, forcing practitioners
to either embrace a restricted ecosystem or incur operational and
orchestrational complexity. In this paper, we describe Buzzsaw:
an independent system for constructing and evaluating complex
feature pipelines, designed for embedded usage across multiple
languages and platforms. We describe its core interfaces, data
types, and algorithms for implementing the system and compare it
to three other common feature engineering frameworks.

1 INTRODUCTION
�e widespread application of machine learning techniques in re-
cent years has rapidly expanded the capabilities of both consumer
and business products. With the commoditization of ETL platforms
and machine learning suites, much of the work of a data scientist
is spent on feature engineering, plugging and playing di�erent sets
of features to improve models [7]. It is o�en considered the “secret
sauce” of model improvement [4, 5]. However, as data size and
model complexity increases, a divide has appeared between where
feature engineering is performed and where learning algorithms
are actually implemented.

As industry has consolidated around platforms like Spark [17]
and MapReduce [6] for cluster compute, large investments have
been made in tooling for broadening platform capabilities for han-
dling diverse workloads. It is natural, then, that feature engineering
gravitates toward those ecosystems; a�er all, raw features are read-
ily available, usually as outputs of upstream jobs. Furthermore, clus-
ter compute is exceptionally well suited for large scale processing
of feature transforms: most transformations can be implemented
with the main primitive of the paradigm, a Map. However, there
are real tradeo�s with these platform-speci�c feature pipelines,
especially in early stage experimentation:

(1) High speed implementations are typically developed inde-
pendently of cluster compute libraries [1, 8–10, 13].

(2) Cluster-compute pipelines are hard to iterate on due to
“Pipelines as Code”. Iteration leads to pipeline jungles [15],
hindering maintenance.

(3) It requires touching multiple systems and platforms even
for simple experimentation.

(4) It is hard, or impossible, to bundle feature pipelines with
external models.

(5) Debugging is di�cult: features are engineered in a com-
pletely separate environment, creating a large surface area
for failure.

In this paper, we present Buzzsaw: a standalone, high perfor-
mance feature engineering library, designed with the following
considerations in mind:

• Embeddable. It should work directly within other lan-
guages.

• Extensible. Adding new feature transforms should be easy
and safe.

• Scalable. It needs to work e�ectively in both local and
cluster compute environments.

• Con�gurable. It needs to be con�g driven, not code driven.
• Performance. It needs to be fast for both batch and real-

time uses.
• Maintainance. It should focus on common interfaces to

minimize glue code [15].
• Deterministic. It should produce consistent results at all

stages of execution.

2 BUZZSAW
Buzzsaw operates on structured features, evaluating each through a
user de�ned directed acyclic graph (DAG). Nodes are de�ned as Fea-
ture Processors (FP): interfaces which compute a transform on a set
of inputs and produce an output. Edges describe the dependencies
between outputs of upstream feature processors to downstream
consumers. Structured data is submi�ed to the graph as JSON
objects, where keys describe the feature names and values the ac-
tual features. Buzzsaw is wri�en in Rust, facilitating safety and
integration over foreign function interfaces (FFI).

2.1 High Level Architecture
Buzzsaw operates on JSON forma�ed data. On execution, it be-
gins by packing the raw features into the Buzzsaw’s internal data
representation, a DType. �e processor graphs are then evaluated,
each node consuming either the original input data or the output
of a previously evaluated Feature Processor. A�er evaluation, an
Output Forma�er aggregates the necessary �elds, transforming
the associated DTypes into the format speci�ed by a user provided
Buzzsaw con�g.

�ere are two independent DAGs speci�ed in Buzzsaw: Features
and Supervised. When generating training data, both DAGs are
evaluated, allowing the Output Forma�er to produce supervised
features. However, when only features are required, such as during
prediction, only the features graph is executed. Figure 1 examines
a simple DAG.

2.2 Buzzsaw DAG
�e core contribution of Buzzsaw is in the composition and eval-
uation of the Feature Processor DAG. We start by describing the



Figure 1: Example of a feature DAG

Framework Platform DPS X Slower
Buzzsaw Native 1,274,044 1.00x
Scikit-Learn Python 66,948 19.03x
PySpark Python 16,624 76.64x
PySpark* Python 17,406 73.19x
PS+B Single Library 107,996 11.80x
PS+B Single* Library 152,531 8.35x
PS+B Batch Library 201,299 6.33x
PS+B Batch* Library 441,656 2.88x
KeystoneML Scala 232,805 5.47x

Table 1: Experiment: Feature Hashing + TF-IDF

primitive data types and move on to de�ning the minimal interfaces
needed for constructing and evaluating the DAG. We close out by
discussing Output Forma�ers. Input documents are composed of
namespaced, strongly typed data, similar to the DataFrame repre-
sentation used in Spark ML [2]. Feature Processors are executed
according to their topological sort order, caching resulting outputs
for consumption by downstream processors. Buzzsaw passes full
ownership of the input channels into an FP, allowing it reuse data
structures and utilize other performance tricks, only copying data
when needed (see Figure 1).

Buzzsaw internally represents features in an algebraic data type
(ADT) called DType. Currently, Buzzsaw supports the following:
booleans, 64-bit signed integers, 64-bit �oats, string, set of strings,
sparse vectors, dense vectors, and string to �oat mappings.

Feature Processors (FP) are the backbone of Buzzsaw. An im-
plementation provides a single function, evaluate, which takes
in a vector of DType and returns a vector of DType. �ey operate
over “columns” of data, providing computational opportunities,
such as vectorization over adjacent rows (e.g. L2 normalization
of dense vectors). Feature Processors have a companion “SerDe”
(an abbreviation of Serialize/Deserialize) object. It’s responsible for
learning a FPs se�ings from a data sample as well as constructing
its companion FP from saved con�gurations. All Feature Proces-
sors SerDe’s (FPS) tie versions to their underlying representations.
When loading a saved FP, SerDe’s validate the saved con�guration
is compatible with the current code base.

Output Forma�ers produce common machine learning formats
from the DAGs, producing both supervised and feature-only records.
As of writing, Buzzsaw produces libsvm [3] format, Vowpal Wab-
bit [10] format, and a generic TSV format.

2.3 Con�guration
Users provide a con�g describing how features �ow through the
DAG. Users describe feature data types, the pipeline, and how to
map features to a speci�ed output format. Buzzsaw follows two

phases: a learning phase, called fit, and a generate phase which
produces the actual feature vectors.

During fit, Buzzsaw parses the user con�guration and a sam-
ple of the dataset to construct the underlying Feature Processors,
learning any statistics relevant to the FP (e.g. mean and variance
in the case of Z-Whitening). It produces a new con�guration �le,
the Buzzsaw pipeline con�g (BPC) �le, consisting of the serialized
pipelines.

�e generate phase loads the pipelines from a BPC �le and
processes documents in mini-batches provided by the user. Buzzsaw
is guaranteed thread-safe by use of language primitives, simplifying
parallel computation in languages like Python and Java.

3 EVALUATION
To evaluate the e�cacy of our approach, we compare Buzzsaw to
other popular frameworks on feature pipeline throughput using
three variants: native, a standalone executable wrapping the Buzz-
saw library, embedded into Python, and �nally compare it to the
state-of-the-art pipeline, KeystoneML[16].

For Python, we look at two common frameworks for feature
engineering: Scikit-learn[14] and PySpark [12, 17], using the ML
Pipeline’s interface built and maintained by Databricks [11]. We
compare the three frameworks using a sample of the May 2015
Reddit comment dataset, released on Kaggle 1, resulting in a dataset
of 29, 590, 949 samples. For hardware, we use a dual CPU, Intel
Xeon CPU E5-2630 v2 at 2.60GHz machine with 128GB of RAM and
4.5TB of disk space, running CentOS 7.

We measure performance for a multi-channel feature pipeline;
we convert the ‘body’ �eld into a feature vector via TF-IDF, the
‘author’ �eld into a feature vector via feature hashing, and �nally
concatenate the resulting vectors to create the output. A more
complete evaluation is available in the full paper.

3.1 Framework Comparisons
We measure overall framework throughput with Documents per
Second (DPS). We measure the relative throughput between li-
braries as compared to our Buzzsaw native implementation, la-
belled as “X Slower”. In an a�empt to be�er replicate performance
across a cluster, we measure and remove �xed cost overhead from
PySpark. �ese are marked in 1 with an *. Experiments were run
three times, using the fastest time reported.

Buzzsaw was the fastest framework tested, over an order of a
magnitude faster than other Python frameworks. PySpark + Buzz-
saw showed good scaling, �nishing over 23 times faster than vanilla
PySpark. Compared to the KeystoneML framework, Buzzsaw regis-
tered nearly a 5.5X improvement in throughput over the equivalent
pipeline.

REFERENCES
[1] Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S Corrado, Andy Davis, Je�rey Dean, Ma�hieu Devin, et al.
2016. Tensor�ow: Large-scale machine learning on heterogeneous distributed
systems. arXiv preprint arXiv:1603.04467 (2016).

[2] Michael Armbrust, Reynold S Xin, Cheng Lian, Yin Huai, Davies Liu, Joseph K
Bradley, Xiangrui Meng, Tomer Ka�an, Michael J Franklin, Ali Ghodsi, et al. 2015.
Spark sql: Relational data processing in spark. In Proceedings of the 2015 ACM
SIGMOD International Conference on Management of Data. ACM, 1383–1394.

1h�ps://www.kaggle.com/reddit/reddit-comments-may-2015

2



[3] Chih-Chung Chang and Chih-Jen Lin. 2011. LIBSVM: a library for support vector
machines. ACM transactions on intelligent systems and technology (TIST) 2, 3
(2011), 27.

[4] Olivier Chapelle and Yi Chang. 2011. Yahoo! learning to rank challenge overview.
In Proceedings of the Learning to Rank Challenge. 1–24.

[5] Ildefons Magrans de Abril and Masashi Sugiyama. 2013. Winning the kaggle
algorithmic trading challenge with the composition of many models and feature
engineering. IEICE transactions on information and systems 96, 3 (2013), 742–745.

[6] Je�rey Dean and Sanjay Ghemawat. 2008. MapReduce: simpli�ed data processing
on large clusters. Commun. ACM 51, 1 (2008), 107–113.

[7] Je�rey Dunn. 2016. Introducing FBLearner Flow: Facebook’s AI backbone.
Facebook blog, h�ps://code.facebook.com/posts/1072626246134461/introducing-
fblearner-�ow-facebook-s-ai-backbone. html (2016).

[8] Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas Mikolov. 2016. Bag
of tricks for e�cient text classi�cation. arXiv preprint arXiv:1607.01759 (2016).

[9] Guolin Ke, Qi Meng, �omas Finley, Taifeng Wang, Wei Chen, Weidong Ma,
Qiwei Ye, and Tie-Yan Liu. 2017. LightGBM: A highly e�cient gradient boosting
decision tree. In Advances in Neural Information Processing Systems. 3149–3157.

[10] John Langford, Lihong Li, and Alex Strehl. 2007. Vowpal wabbit online learning
project. (2007).

[11] Xiangrui Meng, Joseph Bradley, Evan Sparks, and Shivaram Venkataraman. 2015.
ML pipelines: a new high-level API for MLlib. Databricks blog, h�ps://databricks.
com/blog/2015/01/07/ml-pipelines-a-new-high-level-api-for-mllib. html (2015).

[12] Xiangrui Meng, Joseph Bradley, Burak Yavuz, Evan Sparks, Shivaram Venkatara-
man, Davies Liu, Jeremy Freeman, DB Tsai, Manish Amde, Sean Owen, et al.
2016. Mllib: Machine learning in apache spark. �e Journal of Machine Learning
Research 17, 1 (2016), 1235–1241.

[13] Adam Paszke, Sam Gross, Soumith Chintala, and Gregory Chanan. 2017. PyTorch:
Tensors and dynamic neural networks in Python with strong GPU acceleration.
(2017).

[14] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand �irion, Olivier Grisel, Mathieu Blondel, Peter Pre�enhofer, Ron Weiss,
Vincent Dubourg, et al. 2011. Scikit-learn: Machine learning in Python. Journal
of Machine Learning Research 12, Oct (2011), 2825–2830.

[15] D Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips, Dietmar
Ebner, Vinay Chaudhary, Michael Young, Jean-Francois Crespo, and Dan Denni-
son. 2015. Hidden technical debt in machine learning systems. In Advances in
Neural Information Processing Systems. 2503–2511.

[16] Evan R Sparks, Shivaram Venkataraman, Tomer Ka�an, Michael J Franklin,
and Benjamin Recht. 2017. Keystoneml: Optimizing pipelines for large-scale
advanced analytics. In Data Engineering (ICDE), 2017 IEEE 33rd International
Conference on. IEEE, 535–546.

[17] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Sco� Shenker, and Ion
Stoica. 2010. Spark: Cluster computing with working sets. HotCloud 10, 10-10
(2010), 95.

3


	Abstract
	1 Introduction
	2 Buzzsaw
	2.1 High Level Architecture
	2.2 Buzzsaw DAG
	2.3 Configuration

	3 Evaluation
	3.1 Framework Comparisons

	References

