
UberShuffle: Communication-efficient
Data Shuffling for SGD via Coding Theory

Jichan Chung
EE at KAIST

jichan3751@kaist.ac.kr

Kangwook Lee
EE at KAIST

kw1jjang@kaist.ac.kr

Ramtin Pedarsani
ECE at UC Santa Barbara
ramtin@ece.ucsb.edu

Dimitris Papailiopoulos
ECE at University of
Wisconsin-Madison
dimitris@papail.io

Kannan Ramchandran
EECS at UC Berkeley

kannanr@eecs.berkeley.edu

1 INTRODUCTION

Distributed machine learning systems are becoming increasingly
popular due to their promise of high scalability and substantial
speedup gains. In a prototypical distributed learning setup, each
compute node computes gradient updates on parts of the dataset,
and these updates are periodically synchronized at a parameter
server. Recent works show that reshuffling the training data set
across the compute nodes leads to superior convergence perfor-
mance [3, 4, 6, 12, 13, 16, 17]. In practice, however, data shuffling
incurs a large communication load and many practitioners avoid it.

One of the first coded shuffling algorithms for distributedmachine
learning was proposed in [8] to leverage the local caches of the
compute nodes and curtail the communication load of the shuffling
process. Based on a novel coding technique, the parameter server
broadcasts linear combinations of data points, which are carefully
designed such that every compute node can successfully decode its
allocated batch. The authors show that such their proposed coded
shuffling algorithm can –in theory– reduce the communication
load by a factor of Θ(n), where the number of compute nodes is
n. However, the practical efficacy of the coded shuffling algorithm
has not been demonstrated yet. Indeed, the theoretical guarantees
of [7, 8] hold only when the number of data points is approaching
infinity.

The goal of this work is to exhibit that erasure coded algorithms
for data shuffling can indeed lead to significant performance gains
in practice. In this work, we present a new and implementable coded
shuffling algorithm, called UberShuffle, based on [8]. We imple-
ment a distributed machine learning system that can run generic
distributed machine learning algorithms combined with our shuf-
fling procedure. We compare the performance of different shuffling
algorithms under various setups, and show that the coded shuffling
algorithms can achieve significant speed-up gains in practice. In
some cases of our experiments, we observe that the data shuffling
time is reduced by 47%, and the training time is reduced by 32%.

Related Works. When running distributed gradient descent al-
gorithms, periodic shuffling of the training data under without-
replacement sampling is observed to achieve large statistical gains [3,
4, 6, 11–14, 16, 17]. The coded shuffling algorithm is firstly pro-
posed in [7, 8]. Several works have studied the fundamental lim-
its of the shuffling problem and proposed various shuffling algo-
rithms [1, 2, 15]. A similar coding idea is proposed for speeding up
MapReduce applications [9, 10].

1 4

2
5 1 6

7

{1,	2,	3}

{1,	3} {2,	3}
21

(a) Coded Shuffling

2
5 1

4

6

7

{1,	3} {2,	3}
21

(b) UberShuffle

Figure 1: Illustration of encoding table for Coded Shuffling

algorithm and UberShuffle.

2 SYSTEM MODEL AND DATA SHUFFLING

ALGORITHMS

Consider a distributed computing environment with n distributed
compute nodes and a parameter server. Let us denote the compute
node i byWi and the parameter server byM .M has access to the
entire data set, consisting ofq (unit-sized) data points (d1,d2, ...,dq).
At the beginning of each epoch, the system requires all of these data
points to be randomly redistributed across n compute nodes. M
draws a random assignment of each data point without replacement
such that allWi s are assigned the same number of data points. We
denote by Di the set of data indices assigned toWi . We also assume
that eachWi can cache up to s := ⌊αq⌋ data points, for 1/q ≤ α < 1.
We denote the set of data indices that is cached inWi ’s cache by
Ci . We implement data shuffling algorithms which performs the
following task: eachWi recovers Di from data transmissions from
M and its locally stored data Ci , and updates Ci with the union of
the set Di and the set of s − |Di | data points randomly sampled
(without replacement) from Ci \ Di .

We breifly explain uncoded shuffling algorithm, coded shuffling
algorithm [8] and UberShuffle using the following toy example.
Consider a case where n = 3, q = 9, and α = 0.44. Further, assume
that C1 = {2, 3, 4, 8},C2 = {6, 7, 8, 9},C3 = {1, 3, 4, 5} and D1 =
{3, 5, 8},D2 = {1, 4, 9},D3 = {2, 6, 7}.

For the uncoded shuffling algorithm, M simply sends a set of
data pointsUi := Di \Ci to eachWi . In this example, the algorithm
will incur 6 transmission:U1 = {5},U2 = {1, 4},U3 = {2, 6, 7}.

2.1 Coded Shuffling Algorithm

See Fig. 1a for visualization. Assume that M broadcasts d2 + d5.
Since d2 is stored inW1 and d5 is stored inW3,W1 can obtain d5 by
subtracting d2 from d2 + d5, andW3 can obtain d5 similarly. One
can visualize this example in the table labeled as {1, 3} in Fig. 1a.

0 200 400 600

Time(Seconds)

0

0.5

1

1.5

E
rr

o
r

(a)
0 100 200

Time(Seconds)

0

0.5

1

1.5

E
rr

o
r

(b)
0 2 4

Time(Seconds)

0.3

0.4

0.5

0.6

0.7

0.8

E
rr

o
r

(c)
400 450 500

Time(Seconds)

10
-25

10
-20

E
rr

o
r

(d)
No shuffling

Uncoded shuffling

Coded shuffling

UberShuffle

Figure 2: Convergence performances. (a) and (b) are for the matrix completion with synthetic data; (c) is for the matrix com-

pletion with real data; and (d) is for the linear regression with synthetic data.

The first column of the table corresponds to the data points that
are required byW1 and exclusively cached inW{1,3}\{1} , and the
second column is for the data points required byW3 and exclusively
cached inW{1,3}\{3} . By finding the set of nodes where the data
point is exclusively cached for each data point, one can obtain all
the encoding tables shown in Fig. 1a. Once the encoding table is
obtained,M simply generates one encoded packet per row of the
encoding tables, and broadcasts them to theWi s. Here, note that
the communication load of the coded shuffling algorithm for this
example is 4 transmissions.
2.2 UberShuffle

See Fig. 1b for visualization. Recall that in Fig. 1a, there are a few
missing entries in the encoding tables. The key idea of UberShuf-
fle is to fill these gaps by reallocating data points between the
encoding tables in order to reduce the number of packets. For in-
stance, consider d4. The original coded shuffling algorithm assigns
this data point to the encoding table {1, 2, 3} since d4 is exclusively
stored in {1, 3} and required byW2. While this can maximize the
coding gain in the asymptotic regime, in this example with a finite
number of data points, this may not be the optimal choice. For
instance, one can reallocate d4 to the first column of the encoding
table {2, 3}, without compromising the decoding conditions. As a
result of the reallocation, the communication load can be reduced
from 4 to 3.

Roughly, theUberShuffle algorithm constructs a directed acyclic
graph (DAG) representing flows corresponding to possible packet
reallocations, and greedily optimizes the number of encoded pack-
ets by considering each layer of the DAG.

3 EXPERIMENTAL RESULTS

We implement a generic distributed machine learning system with
various shuffling algorithms using Open MPI C, and evaluate the

performance of our shufflng algorithms for the distributed SGD
algorithm for a low-rank matrix completion problem, proposed
in [12], on both synthetic data and real data. For the synthetic
data, we generate low-rank matrices with random Gaussian factor
matrices. For the real data, we use the Movielens 20m dataset [5],
preprocessed by randomly sampling 68 data points from each row of
the users, resulting in a sampled dataset with observation matrix of
size nr ×nc where nr = 68682, nc = 16622. We also run the parallel
SGD (PSGD) algorithm [17] for linear regression with randomly
generated synthetic data matrix A of size q ×m and a vector x of
sizem, and vector y generated by y = Ax .

All experiments are run on an Amazon EC2 cluster with sin-
gle m3.2xlarge (2.5GHz Intel Xeon E5-2670 v2 with 30GB RAM)
instance for M , using 2 cores out of 8 cores, and 20 m3.xlarge
(2.5Ghz Intel Xeon E5-2670 v2 with 15GB RAM) instances forWi s,
each using 2 cores out of 4 cores.

Our experimental results are summarized in Table. 1 and Fig. 2. In
Table 1, we observe that UberShuffle achieves the fastest shuffling
times (including all the extra computational overheads) in most
cases. In Fig. 2, the best performance is observed with UberShuf-
fle for scenarios (a) and (b), and the convergence time is reduced
by at least 19.8% and 32.1%, respectively.

We also implement data shuffling via shared storage system
where computing nodes can directly access the new data points ev-
ery epoch without relying parameter server’s shuffling mechanism,
considering two available options on Amazon Web Service: Elastic
Block Storage (EBS) and Elastic File System (EFS). We compare the
performances of these systems with UberShuffle on low-rank ma-
trix completion (nr = nc = 300k, r = 10,m = 1000,α = 0.05). As a
result, we observe: TEBS = 110, TEFS(general) = 490, TEFS(I/O) = 1100,
and TUberShuffle = 34, all in seconds. Thus, the UberShuffle algo-
rithm is 3.2 times faster than the fastest storage-based alternative.

Table 1: Experimental setups and shuffling time comparison. ‘CS = coded shuf-

fling’, ‘US = UberShuffle’, and ‘UN = uncoded shuffling’; ‘MC = matrix completion’

and ‘LR = linear regression’.

q m α
Shuffling Time (sec) SetupUN CS US (CS-US)/CS

(a) 105 104 0.2 105.5 123.6 65.2 47.2% MC, Synthetic
(b) 3 × 105 1000 0.2 35.0 28.8 25.3 12.2% MC, Synthetic
(c) 6.8 × 104 68 0.2 0.42 1.66 1.52 8.4% MC, Real
(d) 7 × 105 2 × 105 0.14 112.90 94.60 60.82 35.7% LR, Synthetic

2

REFERENCES

[1] M. A. Attia and R. Tandon. 2016. Information Theoretic Limits of Data Shuf-
fling for Distributed Learning. In 2016 IEEE Global Communications Conference
(GLOBECOM). 1–6. https://doi.org/10.1109/GLOCOM.2016.7841903

[2] M. A. Attia and R. Tandon. 2016. On the worst-case communication overhead
for distributed data shuffling. In 2016 54th Annual Allerton Conference on Com-
munication, Control, and Computing (Allerton). 961–968. https://doi.org/10.1109/
ALLERTON.2016.7852338

[3] Léon Bottou. 2012. Stochastic Gradient Descent Tricks. In Neural Networks: Tricks
of the Trade - Second Edition. 421–436. https://doi.org/10.1007/978-3-642-35289-8_
25

[4] Mert Gürbüzbalaban, Asu Ozdaglar, and Pablo Parrilo. 2015. Why Random
Reshuffling Beats Stochastic Gradient Descent. arXiv preprint arXiv:1510.08560
(2015).

[5] F. Maxwell Harper and Joseph A. Konstan. 2015. TheMovieLens Datasets: History
and Context. ACM Trans. Interact. Intell. Syst. 5, 4, Article 19 (Dec. 2015), 19 pages.
https://doi.org/10.1145/2827872

[6] Sergey Ioffe and Christian Szegedy. 2015. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. arXiv preprint
arXiv:1502.03167 (2015).

[7] Kangwook Lee, Maximilian Lam, Ramtin Pedarsani, Dimitris Papailiopoulos, and
Kannan Ramchandran. 2015. Speeding up distributed machine learning using
codes. In the Workshop on ML Systems at NIPS.

[8] Kangwook Lee, Maximilian Lam, Ramtin Pedarsani, Dimitris Papailiopoulos, and
Kannan Ramchandran. 2017. Speeding up distributed machine learning using
codes. IEEE Transactions on Information Theory (2017).

[9] Songze Li, Mohammad Ali Maddah-Ali, and A Salman Avestimehr. 2015. Coded
MapReduce. In Communication, Control, and Computing (Allerton), 2015 53rd
Annual Allerton Conference on. IEEE, 964–971.

[10] Songze Li, Sucha Supittayapornpong, Mohammad Ali Maddah-Ali, and A Salman
Avestimehr. 2017. Coded terasort. arXiv preprint arXiv:1702.04850 (2017).

[11] B. Recht and C. Re. 2012. Beneath the valley of the noncommutative arithmetic-
geometric mean inequality: conjectures, case-studies, and consequences. ArXiv
e-prints (Feb. 2012). arXiv:math.OC/1202.4184

[12] Benjamin Recht and Christopher Ré. 2013. Parallel stochastic gradient algorithms
for large-scale matrix completion. Mathematical Programming Computation 5, 2
(2013), 201–226.

[13] Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. 2011. Hogwild:
A lock-free approach to parallelizing stochastic gradient descent. In Proc. of the
25th Annual Conference on Neural Information Processing (NIPS). 693–701.

[14] Ohad Shamir. 2016. Without-Replacement Sampling for Stochastic Gra-
dient Methods. In Advances in Neural Information Processing Systems
29, D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Gar-
nett (Eds.). Curran Associates, Inc., 46–54. http://papers.nips.cc/paper/
6245-without-replacement-sampling-for-stochastic-gradient-methods.pdf

[15] L. Song, C. Fragouli, and T. Zhao. 2017. A pliable index coding approach to data
shuffling. In 2017 IEEE International Symposium on Information Theory (ISIT).
2558–2562. https://doi.org/10.1109/ISIT.2017.8006991

[16] Ce Zhang and Christopher Re. 2014. DimmWitted: A Study of Main-Memory
Statistical Analytics. PVLDB 7, 12 (2014), 1283–1294. http://www.vldb.org/pvldb/
vol7/p1283-zhang.pdf

[17] Martin Zinkevich, MarkusWeimer, Lihong Li, and Alex J Smola. 2010. Parallelized
stochastic gradient descent. In Advances in neural information processing systems.
2595–2603.

3

https://doi.org/10.1109/GLOCOM.2016.7841903
https://doi.org/10.1109/ALLERTON.2016.7852338
https://doi.org/10.1109/ALLERTON.2016.7852338
https://doi.org/10.1007/978-3-642-35289-8_25
https://doi.org/10.1007/978-3-642-35289-8_25
https://doi.org/10.1145/2827872
http://arxiv.org/abs/math.OC/1202.4184
http://papers.nips.cc/paper/6245-without-replacement-sampling-for-stochastic-gradient-methods.pdf
http://papers.nips.cc/paper/6245-without-replacement-sampling-for-stochastic-gradient-methods.pdf
https://doi.org/10.1109/ISIT.2017.8006991
http://www.vldb.org/pvldb/vol7/p1283-zhang.pdf
http://www.vldb.org/pvldb/vol7/p1283-zhang.pdf

	1 Introduction
	2 System Model and Data Shuffling Algorithms
	2.1 Coded Shuffling Algorithm
	2.2 UberShuffle

	3 Experimental Results
	References

