
High Accuracy SGD Using Low-Precision Arithmetic and
Variance Reduction (for Linear Models)
Alana Marzoev
Cornell University

mam655@cornell.edu

Christopher De Sa
Cornell University

cdesa@cs.cornell.edu

ABSTRACT
Stochastic gradient descent (SGD) is a popular algorithm for solving
optimization problems, many of which originate from the training
of linear models. The performance of SGD is dependent upon its
ability to efficiently process large-scale data sets. With this depen-
dency in mind, we consider a new SGD-style algorithm, referred
to as HALP, which utilizes low-precision arithmetic and variance
reduction techniques. We are interested in this algorithm because of
its potential to unlock the benefits of low-precision arithmetic, such
as increased computational throughput and a reduced memory foot-
print, without being limited by quantization error or a constrained
representational domain. To begin to benchmark these benefits on
CPUs, we implement an 8-bit version of this algorithm, and run
preliminary experiments measuring its convergence per iteration
and wall-clock time.

1 INTRODUCTION
A multitude of machine learning tasks can be represented as op-
timization problems. These optimization problems can be solved
using a popular algorithm, stochastic gradient descent (SGD). The
performance of SGD is largely contingent on its ability to quickly
and efficiently process large-scale data sets, while simultaneously
producing highly accurate results. Efficiency, here, is considered
in multiple contexts, and includes energy, hardware, and statistical
efficiency.

Low-precision arithmetic has been utilized in place of floating point
computation in prior attempts at improving the hardware and en-
ergy efficiency in SGD. A low-precision implementation enjoys a
myriad of benefits over the traditional SGD equivalent. These ben-
efits include an increase in computational throughput, a reduction
of the memory footprint, and a decrease in the energy consumption
associated with running the SGD algorithm [2]. However, these
benefits come at a cost: this technique is ultimately restricted by
quantization (rounding) bias, as well as the fundamental accuracy
limitations of a constrained representational domain, which uses
fewer bits than that of the training examples. This domain may
therefore may be insufficient for storing the entirety of the true
solution in full precision, instead storing only the closest repre-
sentable model.

Although many applications do not possess stringent accuracy
requirements, others do, which motivates the development of a
high-accuracy, high-efficiency SGD algorithm. To this end, we con-
sider a new SGD-style algorithm, optimized for linear models, that
was developed as part of a larger collaboration with the individuals
mentioned in Section 4. The scope of this paper is focused on the
details of the 8-bit implementation of the algorithm and preliminary

experimental results. This algorithm leverages both low-precision
arithmetic and variance reduction techniques [1] in such a way that
helps overcomes the aforementioned limitations associated with
low-precision arithmetic.

In this paper, we experimentally show that for a specific problem
type, this high accuracy, low precision algorithm, referred to from
here on out as HALP, converges at a linear rate to arbitrary levels of
accuracy. We also begin the process of benchmarking the benefits of
low-precision arithmetic seen in HALP, specifically when running
the algorithm on CPUs. We approach this evaluation by compar-
ing the wall clock times of 8-bit HALP with Scikit-learn’s logistic
regression implementation [4], specifically observing the time it
takes for both implementations to reach similar accuracies on a
specific task, using distance to optimum as the metric of accuracy.

Algorithm 1 HALP: High-Accuracy Low-Precision Optimization
for Linear Models

given: N loss functions ∇li and training examples xi , number
of epochs K , epoch length T , step size α , and initial iterate w̃0.
given: number of low-precision-representation bits b.
given: low-precision data representation ■
z0,T → 0.
for k = 1 to K do
w̃k ← w̃k−1 + zk−1,T
for i = 1 to N do
ϕ̃k,i ← xi

T w̃k = ϕ̃k−1,i + xi
T zk−1,T

end for
д̃k ← ∇f (w̃k ) =

1
N

∑N
i=1 l

′
i (ϕ̃k,i )xi

s̃k ←
д̃k

µ(2b−1−1)
re-scale: ■ = (s̃k ,b)
choose: low-precision intermediate representation ■
choose: low-precision intermediate representation ■ = ■×■

require: domain(■) ⊆ domain(■)
h̃k ← Q■ (αд̃k )
zk,0 ← 0
for t = 1 to T do

sample i uniformly from {1, . . . ,N }
n ← Q■

(
α
(
l ′i (ϕ̃k,i + xi

T zk,t−1) − l
′
i (ϕ̃k,i )

))
xi

zk,t ← Q■
(
zk,t−1 − n − h̃k

)
end for

end for
return w̃K + zK,T



Figure 1: Convergence rate comparison
of low-precision SVRG, full-precision
SVRG, 8-bit HALP, and 16-bit HALP.

Figure 2: Comparison of distance to opti-
mum vs. wall-clock time of sklearn’s lo-
gistic regression and HALP.

Figure 3: Comparison of distance to opti-
mum vs. wall-clock time of sklearn’s lo-
gistic regression and HALP.

2 HALP FOR LINEAR MODELS
Many machine learning tasks can be written as a linear model,
where for a loss function l : IR → IR, training examples xi ∈ IRd ,
and component functions fi (x),

fi (w) = l(w
T xi )

The HALP algorithm discussed here is optimized for such tasks.

Algorithm. We use three different key techniques in the HALP
for linear models optimization. The first of these is the utilization
of randomized rounding in the quantization process, in which we
convert numbers to their equivalent values in different representa-
tional domains. A representational number domain is defined by
two parameters, the scale factor δ , and the number of bits, b, which
we denote denote with a color, and use to represent the following
set of numbers:

■ = (δ ,b) = {−δ · 2b−1, . . . ,δ · 2b−1 − 1}

The benefits of using randomized rounding are omitted here, as
they have been explored in prior work [2].

The second technique, which enables the HALP algorithm to reach
arbitrary accuracies, is a novel re-centering and re-scaling mech-
anism. We use this mechanism in setting the parameters of the
low-precision representational domain. As HALP’s outer iterate
approaches the true value with progressively higher levels of confi-
dence in the later iterations of the algorithm, the range of z that we
must optimize over becomes smaller. This prompts us to repeatedly
re-scale the domain to be centered on the outer iterates of SVRG,
which are increasingly closer to the this true value. This technique
is one of the primary distinctions between HALP and “regular"
low-precision SVRG.

The third technique used in HALP enables an improvement in
hardware efficiency and potential improvements in wall clock time.
This technique relies on the realization that the following substitu-
tion can be made in the inner loop of the algorithm:

l ′i (x
T
i wk,t−1) = l

′
i (x

T
i wk − x

T
i zk,t−1)

As a result of this change, it is now possible to cache all of these
dot products at the beginning of each epoch, preventing any full-
precision computation from needing to be done in the inner loop,
and facilitating potential performance improvements in HALP.

Implementation. We implemented an 8-bit version of HALP for
linear models in C++, and manually vectorized the inner loop of the
algorithm using Intel intrinsics instructions. We chose to do this
manually as opposed to relying on gcc’s automatic vectorization
because we were able to get larger speedups in wall clock time with
the former, which is a previously explored effect [3]. We restrict
the generated input data to not include -128, to prevent sign flips
when performing our optimized, low-precision dot products.

3 RESULTS
Setup. We tested 8-bit HALP on a regularized logistic regression
problem using randomly generated data. For comparison, we tested
Scikit-learn’s logistic regression implementation on the same data.

Linear convergence. To verify that HALP converges linearly to
arbitrary levels of accuracy, we compared the convergence rates
of full-precision SVRG, low-precision SVRG (both 8-bit and 16-
bit), and 8-bit HALP. The results of this experiment can be seen
in Figure 1: 8-bit HALP converges linearly, tracking full-precision
SVRG, while both 8-bit and 16-bit SVRG are unable to follow, hitting
noise balls rather than converging all the way to the true solution.

Wall clock time. Our second set of experiments compare the wall
clock time to the distance to optimum reached by 8-bit HALP and
Scikit-learn’s logistic regression implementation, using synthetic
training sets with 100, 000 examples. We show that 8-bit HALP
outperforms Scikit-learn’s implementation for varying model sizes.

4 CONCLUSION & ACKNOWLEDGEMENTS
This paper introduces the 8-bit HALP optimization for linearmodels,
discusses its key enabling techniques, and presents a partial and
preliminary experimental evaluation of the algorithm. This work
is part of a larger, ongoing collaboration with Megan Leszczynski,
Jian Zhang, and Christopher Ré, who we would like to acknowledge
for their many contributions.

2



REFERENCES
[1] Rie Johnson, Tong Zhang. Accelerating Stochastic Gradient Descent using Predictive

Variance Reduction.

[2] Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, Pritish Narayanan. Deep
Learning with Limited Numerical Precision.

[3] Christopher De Sa, Matthew Feldman, Christopher RÃľ, and Kunle Olukotun.
Understanding and Optimizing Asynchronous Low-Precision Stochastic Gradient
Descent.

[4] Pedregosa et al. Scikit-learn: Machine Learning in Python.

3


	Abstract
	1 Introduction
	2 HALP for Linear Models
	3 Results
	4 Conclusion & Acknowledgements
	References

