
Memory-Efficient Data Structures for Learning and Prediction
Damian Eads

Wise.io, GE Digital
San Francisco, California
damian.eads@ge.com

Paul Baines
Wise.io, GE Digital

San Francisco, California
paul.baines@ge.com

Joshua S. Bloom
Wise.io, GE Digital

San Francisco, California
josh.bloom@ge.com

ABSTRACT
In many real-world machine learning systems, memory efficiency,
data pipeline speed, and prediction latency are paramount. Here,
we introduce two data structures—already in production in indus-
trial machine learning settings—that aim to address these practical
needs. EdgeFrame is a data frame optimized for memory-efficient
machine learning on industrial data. It supports lightweight views
that reuse the same components to minimize memory footprints.
An EdgeFrame and Columns can be forked (with copy-on-write
semantics) so that several components of a data pipeline can share
the same data while avoiding side effects caused by local modifi-
cations. An EdgeFrame can be stored off-heap so it can be shared
among multiple worker processes on the same machine. EdgeFrame
can also be stored out-of-core so data sets larger than RAM can be
handled. EdgeFrame supports arrays as a first-class data type so
that image and sensor data can easily be represented in the same
data set. We also introduce and motivate the representation of ma-
chine learning models in a parse-free format, allowing intelligent
use of I/O bandwidth when loaded from disk. This greatly decreases
the time to first prediction when the models are pulled from cold
storage.

1 INTRODUCTION
In machine learning, accuracy is often the primary metric to com-
pare techniques [2]. Training run time and prediction time are
also extensively considered [9]. Though often not given as much
attention, memory usage is critically important in the real world.
Predictable memory usage is required to ensure reliable production
operation as crashes due to inadequate memory cannot easily be
recovered without provisioning newmachines with more resources.

Excessive memory usage was a common problem among many
participants in the AutoML challenge, and the problem persisted
even when the available memory was doubled by the benchmark
organizers [7]. Data partitioning during model construction is often
a culprit for excessive copying of the same data sets. Moreover, the
time it takes to deploy a model on a newly provisioned instance is
often ignored entirely. The overheads of data storage, loading, and
movement are also, typically, neglected from consideration.

To address the first issue of memory inefficiency, we introduce
EdgeFrame, a mutable data frame implementation with several
features designed to keep the memory footprint low and improve
data movement and ingestion. To address the second issue, we pro-
pose flat models, a way of storing model data to minimize parsing,
maximize effective use of I/O, and allow off-heap storage.

Data Frames are a pervasive throughout the data science, ma-
chine learning, and database communities. Pandas is the most pop-
ular and sophisticated data frame, but its memory overhead may
limit the size of data sets that can be trained on a single machine.

Moreover, it is not optimized for bare metal performance of ma-
chine learning [10]. The Dask project offers a distributed data frame
within its framework [13]. SFrame’s focus is on out-of-core pro-
cessing [14]. Spark DataFrame packs each row as an element of an
RDD. It is geared towards database queries on large clusters [1].
EdgeFrame supplements these projects by providing a high perfor-
mance, memory-efficient data frame implementation optimized for
bare metal performance on single machines where workers and
stages can share the same copy of data components as possible.

2 EDGEFRAME
EdgeFrame is a memory-efficient data frame optimized for machine
learning on industrial data. It is used to represent ephemeral train-
ing and prediction data sets. Our in-production implementation
supports:

• copy-on-write forking: columns and data sets are copy-
on-write so a deep copy is only necessary when a view is
modified;

• off-heap data storage: flat layouts enable parts of an Edge-
Frame to be stored off-heap for seamless data sharing be-
tween workers;

• out-of-core: blocks can be cached in tertiary storage (e.g.,
on-blade SSDs) to allow for data sets larger than RAM;

• lightweight slicing: both strided and non-contiguous slic-
ing of an EdgeFrame results in a shallow view;

• tensor data, which is important for sensor-heavy data sets
common in industrial problem domains (e.g., aircraft engines,
power turbines, MRI machines); and

• mixed sparse and dense features: so that densemeta-data
can be combined with sparse features.

Shallow Views and Copy-on-write Data Frames
The same data is often reused in multiple stages of a data pipeline.

Changes made in one part of a build pipeline may inadvertently
lead to side effects in other stages. Requiring a data frame to be
copied between stages avoids this pathology at a high cost.

Most EdgeFrame operations generate a shallow copy – slicing x
with a stride a:b:s or an index array ind generates a lightweight
view:

y = x[a:b:s]
y = x[ind]

An EdgeFrame can be built from more than one EdgeFrame without
a copy. For example,

z = hstack(x[a]["age"],
x[b]["ZC"].rename("zip"), y[a])

generates a lightweight EdgeFrame z from x and y without a copy
(a and b are the same length). The rename operation results in a



SysML, February, 2018, Stanford, CA USA D. Eads, et al.

new EdgeFrame Column view without a copy. We can generate
three data sets from an input data set
train, validate, test = ds.stratified([8,1,1], "Y")

using stratified sampling (80% for training, 10% for validation, and
10% for testing) without a copy.

Until now, we have focused on immutable operations. An Edge-
Frame or a Column can be ‘forked‘ to create a new light-weight
copy as in y = x.fork().

This is akin to forking a source code repository in git[15] or a
BSD process vfork [8]. An EdgeFrame or a Column fork allows
side effect-free changes while reducing memory overhead caused
by excessive copying. To demonstrate, we cloned 107 copies of a
column (108 rows of type uint8, 100 MB) into a new EdgeFrame.
Without EdgeFrame’s shallow copy scheme, this data frame would
be over a petabyte in dense form, but used approximately 2.2 GB,
mostly to store pointers. The data set is forked and 4.9 GB is used.
We then modified a column, but only a single new dense column
was allocated.
Data Ingestion and Data Movement Production-grade data
ingestion demands performance and non-ambiguity. An explicit
schema reduces the possibility of type errors in a data pipeline
due to incorrect type inference from the input data. Text formats
such as CSV and JSON are notoriously CPU-bound. The effects of
serialization are stark as we found experimentally with our parallel-
text parsing project, Paratext [3]. We showed multi-threaded can
lead to more effective use of overall I/O bandwidth [3]. Though
binary formats are preferable, these benchmarks prompted us to
profile our entire stack for bottlenecks.

Themovement of a data frame or column from onemachine to an-
other often requires serialization. Serialization is a common source
of overhead in data ingestion and communication between workers.
A flat layout where data are not packed, the schema is strongly
typed, and the offset of every field is known a priori can greatly
reduce the cost of serialization[4, 5, 17]. Apache Arrow, a common
data payload for interchanging data between tools throughout the
big data ecosystem was founded to address this problem [11].
Off-heap Data If a worker requires data as input that is output
from a previous stage of computation, it may become idle while it
waits for its producer to serialize its result, and if so, the consumer
will waste CPU to deserialize its input payload. For this reason, we
have adopted flat layouts for data payloads within an EdgeFrame to
maximize use of the I/O bandwidth. These payloads are stored off-
heap in shared memory objects so multiple workers can share the
same copy of a data set. Moreover, data lifetimes can be independent
of process lifetimes.

EdgeFrame stores a column’s scalar data in an Arrow array.
Arrow is a multi-language array abstraction designed to share data
payloads between different tools in the big data ecosystem. Non-
scalar dtypes such as tensors can be stored individually in an arrow-
backed array. This avoids serialization for a Column’s contents. Data
can be copied without parsing in a manner that makes effective
use of the I/O bandwidth. To demonstrate interprocess sharing, we
loaded a 14 GB dataset off-heap. Two processes were able to share
the same data set with a negligible impact on RAM usage.
Out-of-core Storage and Caching Since an EdgeFrame is
stored off-heap via a memory map, the page cache can be used to

Msgpack Pickle Parse-Free
Cold write (s) 12.5 87 9.2

Latency to 1st prediction (s) 11.5 86 0.7

Figure 1: Cold I/O performance of a 1000 tree decision for-
est ensemble trained on MNIST (no depth limit). Setup: ext4
mounted on RAID-0 with 2 on-blade SSDs.

support data sets larger than RAM. Ephemeral SSDs serve as an in-
termediate caching layer. We have found in practice that AWS/EBS
is a poor backing choice because it relies on network transport,
which is higher latency and lower throughput relative to ephemeral
SSDs.

Mixed Sparse & Dense EdgeFrame supports combining sparse
and dense columns in the same frame. This is particularly useful
for data sets with dense meta-data and sparse sensor readings.

3 PARSE-FREE MODELS
Machine learning models are often serialized with PMML, Pickle,
PFA or other file formats [6, 12, 16]. While convenient, deserializa-
tion can greatly increase the latency to first prediction when pulling
a model from cold storage or scaling prediction worker nodes. We
introduce parse-free models to address this problem. A parse-free
model is much like a struct where fields of a struct may contain
pointers to data or other structs. However, offsets to each field are
stored instead of pointers because they are invariant to the starting
address of the struct to which they belong. A heap-like sequence of
pages (or off-heap store) is maintained as a memory-mapped file
for each model. An off-heap store contains all the objects needed
to represent a single model. It is a self-contained block that can be
copied to disk, archived to the cloud, or sent over the network to
other workers. When it is retrieved, all that is needed to deploy the
model is a simple memorymap operation. Figure 1 shows that parse-
free models improve the latency to the first prediction by at least
an order of magnitude over serialization-based approaches such
Msgpack and Pickle. Note that the file system caches are flushed
beforehand.

4 CONCLUSION
We introduce EdgeFrame: a memory-efficient data frame for ma-
chine learning on array-heavy, industrial data sets. EdgeFrame
supports off-heap storage so that data can be exchanged between
worker nodes with minimal serialization overhead and multiple
worker processes can share the same copy of a data set. Multiple
stages of a data pipeline can share the same underlying data and
make changes with no side effects because of EdgeFrame’s shal-
low views and copy-on-write semantics. Copies are delayed until a
shared resource is modified. Tensors are a first-class data type in
EdgeFrame so that sensor data can be handled seamlessly. Sparse
and dense columns can be stored in the same EdgeFrame, a require-
ment for many industrial datasets. Lastly, we also extended the
off-heap concept to our representation of machine learning models
reducing the latency to first prediction significantly.



Memory-Efficient Data Structures for Learning and Prediction SysML, February, 2018, Stanford, CA USA

REFERENCES
[1] Michael Armbrust, Reynold S Xin, Cheng Lian, Yin Huai, Davies Liu, Joseph K

Bradley, Xiangrui Meng, Tomer Kaftan, Michael J Franklin, Ali Ghodsi, et al. 2015.
Spark SQL: Relational data processing in spark. In Proceedings of the 2015 ACM
SIGMOD International Conference on Management of Data. ACM, 1383–1394.

[2] Rich Caruana and Alexandru Niculescu-Mizil. 2006. An Empirical Comparison
of Supervised Learning Algorithms. In Proceedings of the 23rd International Con-
ference on Machine Learning (ICML ’06). ACM, New York, NY, USA, 161–168.
https://doi.org/10.1145/1143844.1143865

[3] Damian Eads. 2016. ParaText. (2016). https://deads.gitbooks.io/paratext-bench/
content/

[4] Ion Gaztanaga. 2012. Boost Interprocess. (2012).
[5] Google. 2015. FlatBuffers. (2015). http://google.github.io/flatbuffers/
[6] Alex Guazzelli, Michael Zeller, Wen-Ching Lin, Graham Williams, et al. 2009.

PMML: An open standard for sharing models. The R Journal 1, 1 (2009), 60–65.
[7] Isabelle Guyon, Imad Chaabane, Hugo Jair Escalante, Sergio Escalera, Damir

Jajetic, James Robert Lloyd, Núria Macià, Bisakha Ray, Lukasz Romaszko, Michèle
Sebag, Alexander Statnikov, Sébastien Treguer, and Evelyne Viegas. 2016. A brief
Review of the ChaLearn AutoML Challenge: Any-time Any-dataset Learning
without Human Intervention. In Proceedings of the Workshop on Automatic Ma-
chine Learning (Proceedings of Machine Learning Research), Frank Hutter, Lars
Kotthoff, and Joaquin Vanschoren (Eds.), Vol. 64. PMLR, New York, New York,
USA, 21–30.

[8] William N Joy. 1983. 4.2 BSD system manual.
[9] Yann Lecun, L.D. Jackel, Leon Bottou, Corinna Cortes, J. S. Denker, Harris Drucker,

I. Guyon, U.A. Muller, Eduard Sackinger, Patrice Simard, and V. Vapnik. 1995.
Learning algorithms for classification: A comparison on handwritten digit recogni-
tion. World Scientific, 261–276.

[10] WMcKinney. 2014. Pandas, Python Data Analysis Library. 2015. Reference Source
(2014).

[11] Jacques Nadeau, Todd Lipcon, and Ted Dunning. 2017. Apache Arrow. (2017).
http://arrow.apache.org

[12] Jim Pivarski, Collin Bennett, and Robert L Grossman. 2016. Deploying analytics
with the portable format for analytics (PFA). In Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM,
579–588.

[13] Matthew Rocklin. 2015. Dask: parallel computation with blocked algorithms and
task scheduling. In Proceedings of the 14th Python in Science Conference. 130–136.

[14] The Turi Team. 2016. SFrame. (2016). https://pypi.python.org/pypi/SFrame
[15] Linus Torvalds and Junio Hamano. 2010. Git: Fast version control system. (2010).

http://git-scm.com
[16] Guido Van Rossum et al. 2007. Python Programming Language.. In USENIX

Annual Technical Conference, Vol. 41. 36.
[17] Kenton Varda. 2015. Cap’n Proto. (2015). https://capnproto.org/

https://doi.org/10.1145/1143844.1143865
https://deads.gitbooks.io/paratext-bench/content/
https://deads.gitbooks.io/paratext-bench/content/
http://google.github.io/flatbuffers/
http://arrow.apache.org
https://pypi.python.org/pypi/SFrame
http://git-scm.com
https://capnproto.org/

	Abstract
	1 Introduction
	2 EdgeFrame
	3 Parse-Free Models
	4 Conclusion
	References

