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ABSTRACT
We propose an algorithm called Parle for parallel training of deep
networks that converges 2-4× faster than a data-parallel imple-
mentation of SGD, while achieving significantly improved error
rates that are nearly state-of-the-art on several benchmarks includ-
ing CIFAR-10 and CIFAR-100, without introducing any additional
hyper-parameters. Parle exploits the phenomenon of wide minima
that has been shown to improve generalization performance of deep
networks and trains multiple “replicas” of a network that are cou-
pled to each other using attractive potentials. It requires infrequent
communication with the parameter server and is well-suited to single-
machine-multi-GPU as well as distributed settings.

1 INTRODUCTION
The dramatic success of deep networks has fueled the growth of
massive datasets, e.g. Google’s JFT dataset has 100 million images,
and even larger models. Parallel and distributed training of deep
networks is paramount to tackle problems at this scale. Such esca-
lation however hits a roadblock: stochastic gradient descent (SGD)
with large batch sizes does not generalize well while small batch-
sizes incur communication costs that quickly dwarf the benefits of
parallelization. This paper presents an algorithm named Parle that:

(i) parallelizes the training of deep networks; it trains multiple
copies, called “replicas”, of the same model on possibly dis-
joint datasets over multiple GPUs while requiring very low
communication bandwidth.

(ii) significantly improves upon convergence rate and generaliza-
tion performance; it is 2-4× faster than data-parallel SGD
while achieving nearly state-of-the-art validation errors.

(iii) insensitive to hyper-parameters; it does not introduce any extra
hyper-parameters over SGD.

1.1 Approach
Trai ning a deep network involves solving the optimization problem
x∗ = arg minx∈RN f (x) where the weights are denoted by x and
f (x) is the average loss, say cross-entropy, over the entire dataset,
along with a regularization term, say weight decay. We denote n
copies, also called “replicas”, of the weights by variables x1, . . . ,xn.
Consider the loss function of Elastic-SGD [1]:

x∗ = arg min
x, x1, ..., xn

1
n

n

∑
a=1

f (xa)+
1

2ρn
∥xa − x∥2; (1)

where a parameter ρ > 0 couples two replicas xa and xb. The “ref-
erence” variable x which converges to the average of the replicas

can be thought of as the master parameter server. Performing gra-
dient descent on (1) involves communicating the replicas xa for all
a ≤ n with the reference after each mini-batch update. Therefore,
even though Elastic-SGD was introduced in the parallel setting, it
nonetheless introduces significant communication bottlenecks.

We replace f (x) by a smoother loss called local entropy [2, 3]

f β
γ (x) :=− 1

β
log

(
Gγ/β ∗ e−β f (x)

)
; (2)

where Gγ/β is the Gaussian kernel with variance γ/β . This loss
function has been shown to bias SGD towards “wide minima” which
generalize better than sharp ones [3]. Parle solves for

x∗ = arg min
x, x1, ..., xn

1
n

n

∑
a=1

f β
γ (xa)+

1
2ρn

∥xa − x∥2. (3)

If the stochastic gradient dynamics is ergodic [4, 5], the problem (1)
is equivalent to minimizing (2). They differ, however, in their com-
munication requirements: (2) is a non-distributed algorithm and does
not involve any communication while Elastic-SGD (1) communi-
cates frequently; Parle (3) strikes a balance between the two.

Remark 1 (Parle returns one single model). We let γ, ρ → 0 as
training progresses. This is motivated from connecting problem (3)
with proximal point iteration where these parameters are step-sizes.
Reducing the bandwidth of the Gaussian kernel and the coupling
strength in (1) to zero forces different replicas to collapse together
in the same region in the parameter space, even when they operate
on disjoint datasets on a non-convex energy landscape. Thus, Parle
maintains n replicas during training but returns one single model.

2 ALGORITHM AND ANALYSIS
The gradient of (2) can be written as

∇ f β
γ (x) = γ

−1 ⟨x− y⟩ (4)

where the expectation ⟨·⟩ is computed over a distribution

P(y;x) ∝ exp
(
−β f (y)− β

2γ
∥x− y∥2

)
.

We use Langevin dynamics (SGLD) [8] to estimate this gradient and
this involves a sequence of updates using the mini-batch gradient
fb(y) + γ−1 (y− x) where b is the batch-size and a learning rate η .
The thermal noise in SGLD is β−1 =

2η

b .
The loss function of Elastic-SGD (1) can be minimized by syn-

chronously computing the gradient of each replica, ∇ fb(xa)+ρ−1 (xa−
x) and updating the master x after each iteration with the average
of the replicas. This communication round introduces significant
overheads for small batch-sizes or large networks.

mailto:pratikac@ucla.edu
mailto:carlo.baldassi@unibocconi.it
mailto:riccardo.zecchina@unibocconi.it
mailto:soatto@ucla.edu
mailto:talwalkar@cmu.edu
mailto:adam.oberman@mcgill.ca


SYSML18, February 2018, Stanford, USA Chaudhari et al.

0 100 200 300 400
wall-clock time (min)

3

6

9

12

15
to

p1
 e

rr
or

 (%
)

3.77 3.24

4.38
4.234.29

WRN-28-10: CIFAR-10

Parle (n=3)
Parle (n=8)
Elastic-SGD (n=3)
Entropy-SGD
SGD

(a) Wide-ResNet [6]: CIFAR-10
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(b) Wide-ResNet [6]: CIFAR-100
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(c) All-CNN-C [7]: CIFAR-10: 25% data

Figure 1: Validation error of Parle (green, purple) compared with SGD (black), Elastic-SGD (blue) and Entropy-SGD (red): Figs. 1a and 1b show
that Parle performs significantly better than these algorithms, both in terms of convergence rate as well as generalization. Fig. 1c shows that Parle
with n = 6 replicas, each with only 25% of data is significantly faster and better than data-parallel SGD on the full dataset.

The loss function of Parle is motivated from the fact that Elastic-
SGD with β−1 =

2η

b is equivalent to minimizing local entropy (2) if
the gradient dynamics is ergodic; this was proved using stochastic
homogenization in [4] and replica theory in [5]. The updates of the
two algorithms can be interleaved in Parle to obtain:

ya
k+1 = ya

k −η∇ f (ya
k )−ηγ

−1 (ya
k − xa

k
)
, (5a)

za
k+1 = α za

t + (1−α ) ya
k+1, (5b)

if k/ℓ is an integer

{
xa

k+1 = (1− τ ) za
k+1 + τ xk,

xk+1 = 1
n ∑

n
a=1 xa

k ;
(5c)

here τ =
γ

ρ+γ
and η is the step-size. The number of steps of SGLD

used to estimate the gradient ∇ f β
γ (x) are ℓ while α determines the

the exponential averaging for the gradient estimate. We also add
Nesterov’s momentum to (5a) in our implementation.

We can show that as β → ∞, minimizing (3) is equivalent to
minizing the Moreau envelope [9, 10] of f (x)

fγ+ρ (x) = inf
y

{
f (y)+

1
2(γ +ρ )

∥x− y∥2
}

and the updates of Parle become, simply, the proximal point itera-
tion [11] xk+1 = prox(γ+ρ ) f (xk ). The parameters γ,ρ which are the
bandwidth of the Gaussian kernel and the strength of the replica
coupling are therefore seen as the step-sizes in PPI. They key idea
in Parle is that prox(γ+ρ ) f is split into proxγ f and proxρ f ; the for-
mer is computed inexactly using SGLD updates while the latter is
computed inexactly using Elastic-SGD updates.

Remark 2 (Parle is insensitive to hyper-parameters). The av-
eraging parameter α is fixed to 0.75. PPI is insensitive to step-
sizes and Parle begets the same property with respect to γ and ρ .
We use an exponentially decreasing schedule for them of the form

γk = γ0
(
1− 1

2B
)⌊k/ℓ⌋

where B is the number of weight updates per
epoch and γ0 is fixed to 100. The schedule for η in Parle is set
to be the same as that of SGD. The parameter ℓ determines the
communication complexity since replicas are averaged every ℓ mini-
batch updates. Using the non-asymptotic analysis of SGD [12] as
a heuristic, it can be seen that the number of SGLD steps ℓ should
scale linearly with ηγ . Our current implementation sets ℓ = 25. The

values of all these hyper-parameters are fixed in our experiments,
irrespective of the dataset or the network architecture.

Remark 3 (Communication requirements). Replicas in Parle syn-
chronize weights with the master in step (5c) every ℓ mini-batch
updates; steps (5a) and (5b) are executed independently. Since Parle
is equivalent to Elastic-SGD if ℓ = 1,γ−1 = 0,α = 0, communication
requirements of Parle are ℓ times smaller than those of Elastic-SGD.

3 EXPERIMENTAL RESULTS
Fig. 1 shows experimental results on benchmark datasets such as
CIFAR-10 and CIFAR-100 [13] with standard data augmentation to
match the setup of the baselines. Parle obtains nearly state-of-the-art
errors with significant wall-clock time speedup; as a comparison,
our generalization error is better than that of an ensemble of six
DenseNet-100 networks [14].

Fig. 1c shows an example where Parle obtains better generaliza-
tion as compared to SGD even when the latter operates on the full
data. This is a direct consequence of setting ρ → 0 whereby different
replicas are forced to collapse to the same region in the parameter
space in spite of working on different datasets.

Remark 4 (Federated learning). Our preliminary experiments
show that the generalization performance of Parle is comparable to
that of SGD even with n ≈ 1000 replicas, each operating with 1%
subset of the data. Coupled with ideas from the proximal operators
literature and [15], this has implications for federated learning [16]
on diverse computational platforms.

Remark 5 (Parle does not overfit on the training data). It is
widely observed that state-of-the-art deep networks obtain good
validation errors and near-zero training errors, i.e., the generalization
gap is quite large. For instance, the training error for SGD in Figs. 1a
and 1b is about 0.01%. Parle has a much lower generalization gap, it
obtains a much higher training error: 4-5% for CIFAR-10 and 7-9%
for CIFAR-100, in addition to a lower validation error. This suggests
that minimizers found by Parle are qualitatively different from those
of SGD: they lie higher in the energy landscape but still generalize
well.
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