BinaryCmd: Keyword Spotting with deterministic binary basis

Javier Fernéndez—MarquésT, Vincent W.-S. Tsengi, Sourav Bhattacharya®, Nicholas D. Lane™*

¥ University of Oxford, ¥ Cornell University, “Nokia Bell Labs

ABSTRACT

We present a compact binary architecture with 60% fewer parame-
ters and 50% fewer operations (OP) during inference compared to
the current state of the art for keyword spotting (KWS) applications
at the cost of 3.4% accuracy drop. This architecture makes use of
binary orthogonal codes to analyze speech features from a voice
command resulting in a model with minimal memory footprint and
computationally cheap, making possible its deployment in very
resource-constrained microcontrollers with less than 30kB of RAM.

1 INTRODUCTION

KWS has become a popular always-on feature in smartphones,
wearables and smart home devices. It serves as the entry point for
speech based applications once a predefined command (e.g. “Ok
Google®, “Hey Siri”) is detected from a continuous stream of audio.
Because KWS applications are always running they follow a very
efficient architectural design and are often implemented on small
dedicated microcontrollers. These devices are constrained in terms
of memory and compute capabilities, limiting the complexity and
memory footprint of the deployed model.

We present BinaryCmd, read as “binary command”, a novel neu-
ral network (NN) architecture for audio that represents the weights
as a combination of predefined orthogonal binary basis that can
be generate very efficiently on-the-fly. This property enables the
off-loading of the convolutional filters from the model, resulting in
models with smaller memory footprint and a more efficient infer-
ence stage. Inspired by ResNet’s bottleneck layer [5] and LBCNN [9],
where the suitability of sparse binary filters for image classifica-
tion tasks is proven, we present a vastly reduced architecture from
those generally use for vision problems and adjusted it at both
macroarchitectural and microarchitectural levels to better capture
the temporal dimension of input audio commands.

We compare our work to HelloEdge [15] following their micro-
controller classification scheme and particularly focusing on the
Small (S) group, where the model size limit is set to 80kB and the
maximum number or OPs during inference is 6M. Likewise, we
use Google’s Speech Commands Dataset [13] to train and evaluate
our architecture. BinaryCmd requires significantly less parameters
and OPs than the best architecture in [15] that relies in depthwise
separable convolutional neural networks (DS-CNN) [4, 6, 14] and
that is, to the best of our knowledge, the current state of the art for
KWS applications.

2 A BINARY NETWORK FOR KWS

System Overview. The implemented KWS system is comprised
of two fundamental blocks where speech features are first extracted
from the 1s voice command input and are fed to a NN-based block
that outputs the id of the detected voice command. The system’s
macroarchitecture is depicted in Figure 1. We follow the same strat-
egy as in [15] to extract an array of 49 X 10 MFCC speech features
from the input speech signal and feed them to our network.

Architecture. We present a novel NN block containing the
following elements: three nested on-the-fly convolutional layers
(they represent BinaryCmd’s core, Figure 2) followed by a standard
convolutional, max-pooling and fully connected layers. All con-
volutional layers use ReLu as activation functions and have been
trained using batch normalization [7].

Voice command

!

Speech

MFCC features

OVSF codes
generator

Feature
Extraction

Weights

Filter

MFCC Generator

features

A 4
l BinaryCmd l

Voice command id

RelLu

Conv

tensor

Figure 1: System architecture. Figure 2: BinaryCmd’s core.

On-the-fly convolutions. Unlike standard convolutional neu-
ral networks (CNN), our architecture does not learn convolutional
filters directly. Instead, it learns weighting coefficients of determin-
istic binary basis that are combined in a linear fashion manner to
generated the filters. We use orthogonal variable spreading factor,
OVSF!, binary codes of length 27, n € N, to generate these basis.

The filter creation process using the OVSF basis can be didacti-

OVSF codes

Weights
{1, 1,1,1],01,1,-1,-1]}

{0.5,-0.7}

Convolutional

11 } } Filter
77 73]

Figure 3: Filter generation process. Here we show an example of us-
ing two OVSF basis to generate a 1 X 2 X 2 X 1 convolutional filter.

cally illustrated as in Figure 3: First the generator outputs a set
of 2" —dimensional arrays of [+1,—1] elements; then the arrays
get reshaped to match the dimensions of the convolutional filter
(a 4-dimensional tensor); and finally they get combined using the
learned weights. We use the generated filters in our convolutional
layers.

This work has been implemented in TensorFlow [1] using as
base the source code provided in [15].

LOVSF codes were introduced for 3G communication systems as channelizations codes
aiming to increase system capacity in multi-user access scenarios[2].

SysML 2018, February 2018, Stanford, CA, USA

3 EVALUATION

We evaluate three configurations of BinaryCmd with a focus on
reducing on-device memory footprint and number of OPs per in-
ference pass while maintaining acceptable accuracy rates that out-
perform other models [3, 10-12] found in the recent literature with
comparable number of OPs. The three configurations share the
majority of network parameters and only differ in the number of
filters, stride and ratio parameters used in our on-the-fly convolu-
tional layers. The parameters used in our experiments are shown in
Table 2. For a given filter dimensions dim = inCh X w X h X outCh
there are dim dim-dimensional OVSF orthogonal binary basis. The
ratio parameter, p € [0, 1], specifies the percentage of basis that
are used to generate a filter. Intuitively, the smaller the ratio, the
coarser the filters and the bigger the model size savings would be,
and vice-versa.

Model Acc. Memory OPs A2S/A20Ps
DS-CNN [15] 94.4% 38.6kB 5.4M 2.45/17.48
CRNN [15] 94.0% 79.7kB 30M 1.18/31.33
GRU [15] 93.5% 78.8kB 3.8M 1.19/24.6
LSTM [15] 92.9% 79.5kB 3.9M 1.17/23.82
Basic LSTM [15] 92.0% 63.3kB 5.9M 1.45/15.59
CNN [15] 91.6% 79.0kB 50M 1.16/18.32
BinaryCmd-A 91.4% 24.5kB 1.8M 3.73/50.78
BinaryCmd-B 91.2% 22.8kB 2.3M 4.00/39.57
BinaryCmd-C 91.0% 15.8kB 2.6M 5.76/34.96
DNN [15] 84.6% 80.0kB 0.16M 1.05/528.75

Table 1: Comparison of three BinaryCmd configurations against DS-
CNN, the current state of the art for KWS applications, and other
baselines presented in [15] for microcontrollers limited to a maxi-
mum of 80kB of memory and 6M OPs. Details for each BinaryCmd
configuration are shown in Table 2.

OBinaryCmd ADS-CNN[15] o0Other baselines[15]
95 R 95 J R
DS-CNN DS-CNN
CRNN GRU
93 % 93 o
BinaryCmd-A LST™M o o) BinaryCmd-A o) LSC')I'M
ST /ED NN / ¥ 91| o E Basic LSTM =
> >
8 g | FlusyCmdB Basic LSTM | & 8 \ BinaryCmd-B
§ BinaryCmd-C § BinaryCmd-C
< <
87 87
DNN DNN
85 o 85 o

1 2 3 4 5 6
OP (Millions)

20 30 40 50 60 70 80
Model Size (kB)

Figure 4: Results comparison against architectures in [15] for the
category of small (S) microcontrollers. DS-CNN has never been
tuned below 38.6kB and 5.4M OPs. All other configurations in
[15] result in larger and computationally more expensive mod-
els: (189kB |19.8M OPs) and (497kB | 56.9M OPs), respectively for
medium and large categories of microcontrollers.

We compare BinaryCmd against DS-CNN and all the baselines
analysed in [15]. Our configurations explore the void space of 1M-
3M OPs and 10kB-25kB. Architectures lying in those range of values

J.Fernandez-Marqués et al.

would fit in some commercially available mid-low end ARM micro-
controllers, as show in Table 3. Our preliminary results, Figure 4,
show the potential of our binary architecture: up to 59% model size
and 67% number of OPs reduction at the expense of no more than
3.4% accuracy loss when compared to DS-CNN. All three of our
configurations simultaneously achieve top accuracy-to-size (A2S)
and accuracy-to-OPs (A20Ps) ratios meaning that BinaryCmd is a
good first step towards the design of architecture capable of pro-
viding over 90% accuracy levels with minimal memory footprint
and low computational costs.

Config #Filters Strides [x, y] Ratios (p)
A (64,8 32] [22],[22],[1,1] [1.0,1.0,1.0]
B [64, 16, 16] [2 2], [2 2], [1, 1] [1.0,0.5, 1.0]
C [16,16,16] [2 2], [1, 1], [1, 1] [1.0, 1.0, 1.0]

Table 2: Parameters in BinaryCmd for each configuration. All pa-
rameters are given in triplets since there are three on-the-fly con-
volutional layers (see Figure 2).

Unlike in [15], where each architecture has been optimally trained
after performing an exhaustive search for feature extraction and
NN model hyperparameters, the work here presented only modifies
the number of training steps from the default parameters provided
in [15] source code, leaving room for more efficient training set-
ups. Furthermore, our implementation only applies standard 8-bit
quantisation to the weights of the second and third on-the-fly con-
volutional layers as well as the standard convolutional and fully
connected layers that come later in the pipeline, meaning that fur-
ther reducing the model’s memory footprint is also possible. In
addition, implementing a quantisation scheme [8] that jointly pro-
vides model size reductions as well as more efficient inference is a
path worth exploring for applications like KWS.

Core Freq. SRAM Flash

Cortex-M0+ 30 MHz 16 kB 64 kB

Cortex-M0+ 48 MHz 32kB 256 kB

Cortex-M3 72MHz 64kB 250 kB

Table 3: Selection of mid-low end ARM Cortex-M microcontrollers.

4 SUMMARY AND FUTURE WORK

We have presented a binary architecture capable of giving near
start of the art accuracy levels while requiring a fraction of model
parameters and considerable less operations per inference pass. We
make this possible by generating convolutional filters on-the-fly
using binary orthogonal codes that can be generated efficiently and
reduce then number of trainable parameters. In the next iterations
of this work we will explore different architectures suitable for
speech applications that exploit further the on-the-fly generation
nature of our architecture enabling a more complex design while
maintaining acceptable computational costs and model size.

BinaryCmd: Keyword Spotting with deterministic binary basis

REFERENCES

[1] Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,
Yanggqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Leven-
berg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike
Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaogiang Zheng.
2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.

(2015). https://www.tensorflow.org/ Software available from tensorflow.org.

[2] Fumiyuki Adachi, Mamoru Sawahashi, and Hirohito Suda. 1998. Wideband
DS-CDMA for next-generation mobile communications systems. IEEE communi-

cations Magazine 36, 9 (1998), 56—69.

[3] Sercan Omer Arik, Markus Kliegl, Rewon Child, Joel Hestness, Andrew Gib-
iansky, Christopher Fougner, Ryan Prenger, and Adam Coates. 2017. Convolu-
tional Recurrent Neural Networks for Small-Footprint Keyword Spotting. CoRR

abs/1703.05390 (2017). arXiv:1703.05390 http://arxiv.org/abs/1703.05390

[4] Francois Chollet. 2016. Xception: Deep Learning with Depthwise Separable
Convolutions. CoRR abs/1610.02357 (2016). arXiv:1610.02357 http://arxiv.org/

abs/1610.02357

[5] Kaiming He, Xiangyu Zhang, Shaoging Ren, and Jian Sun. 2015. Deep Residual
Learning for Image Recognition. CoRR abs/1512.03385 (2015). arXiv:1512.03385

http://arxiv.org/abs/1512.03385

[6] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. 2017. MobileNets:
Efficient Convolutional Neural Networks for Mobile Vision Applications. CoRR

abs/1704.04861 (2017). arXiv:1704.04861 http://arxiv.org/abs/1704.04861

[7] Sergey Ioffe and Christian Szegedy. 2015. Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift. CoRR abs/1502.03167

(2015). arXiv:1502.03167 http://arxiv.org/abs/1502.03167

[8] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, An-
drew G. Howard, Hartwig Adam, and Dmitry Kalenichenko. 2017. Quantization
and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference.

[9] Felix Juefei-Xu, Vishnu Naresh Boddeti, and Marios Savvides. 2016. Local Binary
Convolutional Neural Networks. CoRR abs/1608.06049 (2016). arXiv:1608.06049

http://arxiv.org/abs/1608.06049

[10] Tara N. Sainath and Carolina Parada. 2015. Convolutional neural networks for

small-footprint keyword spotting. In INTERSPEECH.

[11] Ming Sun, Anirudh Raju, George Tucker, Sankaran Panchapagesan, Gengshen
Fu, Arindam Mandal, Spyros Matsoukas, Nikko Strom, and Shiv Vitaladevuni.
2017. Max-Pooling Loss Training of Long Short-Term Memory Networks for
Small-Footprint Keyword Spotting. CoRR abs/1705.02411 (2017). arXiv:1705.02411

http://arxiv.org/abs/1705.02411

=
&

0l.tar.gz
[14

abs/1707.01083 (2017). arXiv:1707.01083 http://arxiv.org/abs/1707.01083
[15

arXiv:1711.07128 http://arxiv.org/abs/1711.07128

Zhiming Wang, Xiaolong Li, and Jun Zhou. 2017. Small-footprint Keyword
Spotting Using Deep Neural Network and Connectionist Temporal Classifier.
CoRR abs/1709.03665 (2017). arXiv:1709.03665 http://arxiv.org/abs/1709.03665

[13] Pete Warden. 2017. Speech Commands: A public dataset for single-word speech
recognition. (2017). http://download.tensorflow.org/data/speech_commands_v0.

Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. 2017. ShuffleNet: An
Extremely Efficient Convolutional Neural Network for Mobile Devices. CoRR

Yundong Zhang, Naveen Suda, Liangzhen Lai, and Vikas Chandra. 2017. Hello
Edge: Keyword Spotting on Microcontrollers. CoRR abs/1711.07128 (2017).

SysML 2018, February 2018, Stanford, CA, USA

https://www.tensorflow.org/
http://arxiv.org/abs/1703.05390
http://arxiv.org/abs/1703.05390
http://arxiv.org/abs/1610.02357
http://arxiv.org/abs/1610.02357
http://arxiv.org/abs/1610.02357
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1608.06049
http://arxiv.org/abs/1608.06049
http://arxiv.org/abs/1705.02411
http://arxiv.org/abs/1705.02411
http://arxiv.org/abs/1709.03665
http://arxiv.org/abs/1709.03665
http://download.tensorflow.org/data/speech_commands_v0.01.tar.gz
http://download.tensorflow.org/data/speech_commands_v0.01.tar.gz
http://arxiv.org/abs/1707.01083
http://arxiv.org/abs/1707.01083
http://arxiv.org/abs/1711.07128
http://arxiv.org/abs/1711.07128

	Abstract
	1 Introduction
	2 A Binary Network for KWS
	3 Evaluation
	4 Summary and Future Work
	References

