
GPU-acceleration for Large-scale Tree Boosting
Huan Zhang

UC Davis
Davis, CA

ecezhang@ucdavis.edu

Si Si
Google Research

Mountain View, CA
sisidaisy@google.com

Cho-Jui Hsieh
UC Davis
Davis, CA

chohsieh@ucdavis.edu

1 INTRODUCTION
Decision tree has become one of the most successful nonlinear learn-
ing algorithms in many machine learning and data mining tasks.
Many algorithms are proposed based on decision trees and tree en-
semble methods, such as random forest [1–3], gradient boosting
decision trees (GBDT) [4], and regularized greedy forest [5]. These
algorithms have shown superb performance in regression, classifica-
tion, and ranking [6] tasks.

Among these tree ensemble methods, GBDT has gained lots of
attention recently due to its superb performance and its flexibility
of incorporating different loss functions. However, it is non-trivial
to have an implementation that performs well in practice, leading
to a need of developing efficient software packages. XGBoost [7]
is the most widely used package for training GBDT, which uses an
optimized sort-and-scan algorithm to find the exact best split on each
leaf. Recently, LightGBM [8] proposes to use histogram-building
approach to speed up the leaf split procedure. Although the leaf splits
are approximate, it is more efficient than the exact-split method.

Recent works [9, 10] proposed several different approaches for
parallelizing decision tree building on distributed systems; however,
as an important parallel computing resource, GPU is rarely exploited
for this problem. Among these packages, only XGBoost utilizes
GPU for acceleration1, but the speedup is not very significant, e.g.,
training on a top-tier Titan X GPU is only 20% faster than a 24-
core CPU2. There are also some other early attempts on building
decision trees using GPUs, for instances, CUDATree[11]. All these
GPU implementations use a similar strategy (parallel multi-scan
and radix sort) to find the best split, which mimics the exact-split
method on CPU. They require a lot of irregular memory access
and the computation pattern does not fit into GPU’s parallelization
model well. Thus, they can hardly compete with optimized multicore
implementations on modern server CPUs.

In this paper, we present a novel massively parallel algorithm for
accelerating the decision tree building procedure on GPUs, which
is a crucial step in GBDT and random forests training. Previous
GPU based tree building algorithms are based on parallel multi-scan
or radix sort to find the exact split and thus suffer from scalability
and performance issues. We show that using a histogram based
algorithm to approximately find the best split is more efficient and
scalable on GPU. We develop a fast feature histogram building
kernel on GPU with carefully designed computational and memory
access sequence to reduce atomic update conflict and maximize GPU
utilization. Our algorithm can be used as a drop-in replacement for
histogram construction in popular tree boosting systems to improve
their scalability. Our results are highlighted as follows:

• We show that histogram based methods for decision tree construc-
tion on GPU is more efficient than existing approaches. We design

1This paper describes the GPU algorithm used in LightGBM; full version available at
https://arxiv.org/pdf/1706.08359.pdf

2http://dmlc.ml/2016/12/14/GPU-accelerated-xgboost.html

a very efficient algorithm for building feature histograms on GPU
and integrate it into a popular GBDT learning system, LightGBM.

• We show significant speedup on large-scale experiments. For
epsilon dataset, XGBoost (with exact-split tree builder) takes
over 4,100 seconds on a 28-core machine and we only need 165
seconds to achieve the same accuracy using a $500 GPU, or 300
seconds with a $239 GPU.

• Our algorithm has superior scalability. The exact-split based GPU
implementation in XGBoost fails due to insufficient memory on 4
out of 6 datasets we used, while our learning system can handle
datasets over 25 times larger than Higgs on a single GPU, and
can be trivially extended to multi-GPUs.

2 PROPOSED ALGORITHM
Approximate Split Finding Using Feature Histograms. GBDT
constructs a bunch of decision trees in a boosting fashion and the
main computation cost is to build each decision tree. When splitting
a node in a decision tree, we need to choose a feature and find a
good threshold, to split the data examples the left or right child
leaves based on their feature values. Finding the exact best split for
a feature requires going through all feature values and evaluating the
loss function for each of them. For large datasets, it is unnecessary
and repetitious to check every possible position to find the exact
split location; instead, an approximately best split often works quite
well. One way to find the approximate best split is to test only k split
positions, and this can be done efficiently using feature histograms.
We first convert continuous feature values into k discrete bins, and
then construct a histogram with k bins for each feature. To find
the split, we can evaluate the loss function only at these k points.
Because building histograms is a rather straight-forward process, it
is easy to implement efficiently on hardware.

Building Feature Histograms on GPU. Although building a his-
togram is trivial using a single thread, problems arise when there
are a large number of threads computing one histogram. One way
to build histogram in parallel is that each thread builds its private
histogram using part of the data, and in the end all threads reduce
their private histograms into a single final histogram. When the num-
ber of threads is large, the reduction step will incur a large overhead.
Thus, we want the number of private histograms to be much smaller
than the total number of threads. However, if two or more threads
update the bin counters of the same histogram, their updates must be
atomic. When utilizing hardware atomic instructions, it is important
to reduce conflicts for best performance.

Data Structure and Memory Allocation. To avoid the ineffi-
cient non-sequential scattered access to the feature array in global
memory, we bundle every 4 binned features (one byte each) into
a 4-feature tuple (4-byte) and store feature tuples in GPU memory.
Each GPU thread will work on 4 features of one sample at once.
This strategy also requires that each workgroup maintains 4 set of
histograms in local memory, and each set of histogram consists of 3
statistics: gradient, hessian and a counter. Each value takes 4 bytes

https://arxiv.org/pdf/1706.08359.pdf

Huan Zhang, Si Si, and Cho-Jui Hsieh

3000

4000

5000

3293

4845

2643

4124

Higgs epsilon Bosch Microsoft-LTR Expo Yahoo-LTR0

500

1000

1500

806

1239

N/A

691648

1194

N/A

452

N/A N/A

1007

N/A N/A

533

291

1389

761

215 176 146

372

1265

718

228 186 130143

491

258
178

100 161134

300
175 139 102 90116

360

161 123 86 101112 165 108 111 85 65

Exact, 28-Core CPU
Sketching, 28-Core CPU
Exact, NVIDIA GTX 1080
Histogram, k=255, 28-Core CPU
Histogram, k=63, 28-Core CPU
Histogram, k=255, AMD RX 480
Histogram, k=63, AMD RX 480
Histogram, k=255, NVIDIA GTX 1080
Histogram, k=63, NVIDIA GTX 1080

W
al

l T
im

e
(s

ec
on

ds
)

Figure 1: Performance comparison between Histogram with 63 and 255 bins on CPU and GPU, Exact on CPU and GPU, and Sketching on CPU.
Exact on GPU runs out of memory except for Bosch and Yahoo-LTR

(assuming single precision is used), so the total local memory re-
quirement is 4×3×4×k bytes. When k = 256, we need 12 KB local
memory per workgroup. This allows 5 workgroups per compute unit
of GPU, which is an acceptable occupancy.

Reduce Atomic Update Conflicts. In our GPU algorithm, each
thread processes one sample of the 4-feature tuple, and a total ofm
(m is the size of workgroup) samples are being processed at once.
When all m (usually 256) threads update a single histogram with
k bins simultaneously, it is very likely that some threads have to
write to the same bin because they encounter the same feature value,
and the atomic operation becomes a bottleneck since hardware must
resolve this conflict by serializing the access. To reduce the chance
of conflicting updates, we exploit a special structure that occurs in
our feature histogram problem but not in traditional image histogram
problem—we construct multiple histograms simultaneously instead
of just one. We want m threads to update 8 distinct histograms
in each step in a interleaving manner. In this case, m threads are
updating 8k histogram bins at each step, greatly reduce the chance
that two threads write to the same bin.

Use of Small Bin Size. A major benefit of using GPU is that
we can use a less than 256 bin size to further speedup training,
potentially without losing accuracy. On CPU it is not very beneficial
to reduce the bin size below 256, as at least one byte of storage
is needed for each feature value. However, in our GPU algorithm,
using a smaller bin size k, for example, 64, allows us to either add
more private histograms per workgroup to reduce conflict writes
in atomic operations, or reduce local memory usage so that more
workgroups can be scheduled to the GPU, which helps to hide the
expensive memory access latency. Further more, using a smaller bin
size can reduce the size of histograms and data transfer overhead
between CPU and GPU.

3 EXPERIMENTAL RESULTS
We compare the following algorithms on CPU and GPU:

Histogram: We will compare our proposed histogram-based al-
gorithm on GPU3 with other methods. LightGBM is a representative
CPU implementation of this algorithm and we use it as the reference.

Exact: the traditional method to learn a decision tree which
enumerates all possible leaf split points. We use the “exact” tree
learner in XGBoost for its CPU implementation, and the “grow_gpu”
learner [12] in XGBoost as a GPU reference implementation.

3Our GPU algorithm was first released at https://github.com/huanzhang12/lightgbm-gpu
on Feb 28, 2017, and has been merged into LightGBM repository on April 9, 2017

Sketching: the “approx” tree learner in XGBoost, which also uses
histogram for approximately finding the split, however features are
re-binned after each split using sketching. No GPU implementation
is available for this algorithm due to its complexity.

Experiment Setup. We use the following six datasets in our ex-
periments: Higgs, epsilon, Bosch, Yahoo-LTR, Microsoft-LTR,
and Expo, representing quite different data characteristics. We fol-
low a publicly available benchmark instruction4 for setting training
parameters, so that our results are comparable to public results. Bin
size k is set to 2555 and 63. The GPU implementation of Exact algo-
rithm in XGBoost only works on Bosch and Yahoo-LTR datasets;
other datasets do not fit into the 8 GB GPU memory. In all our ex-
periments, we use two representative, main-stream GPUs from the
latest production line of AMD and NVIDIA: Radeon RX 480 ($239
MSRP) and GTX 1080 ($499 MSRP). The two GPUs are installed
to a dual-socket 28-core Xeon E5-2683 v3 ($3692 MSPR) server
with 192 GB memory. For all CPU results, we run 28 threads. Note
that the GPUs we used are not the best ones in the market, and our
results can be further improved by using a more expensive GPU.
We hope that even a budget GPU can show significant speedup in
training, making GPU a cost-effective solution.

Training Performance. We find that training with a bin size of
63 does not affect training performance metrics (AUC or NDCG)
on both CPU and GPU. Also, our Histogram based method on
GPU can get very similar AUC and NDCG with the one on CPU
despite using single precision. Figure 1 shows the training time using
different algorithms. On dataset epsilon and Bosch, our speedup is
most significant: Using the GTX 1080 GPU and 63 bins, we are 7-8
times faster than Histogram algorithm on CPU, and up to 25 times
faster than Exact on CPU. On Higgs, Expo and Microsoft-LTR,
we also have about 2-3 times speedup. Even using a low-cost RX
480 GPU (less than half of the price of GTX 1080), we can still
gain significant amount of speed up, as it is only 30% to 50% slower
than GTX 1080. We should reemphasize that this comparison is
made between a powerful 28-core server, and a budget or main-
stream (not the best) GPU. Also, Exact on GPU cannot even beat
28 CPU cores on Yahoo-LTR and Bosch, and for all other datasets
it runs out of memory. Thus, we believe that the Exact decision tree
construction algorithm using parallel multi-scan and radix sort on
GPU does not scale well. Our histogram based approach can utilize
the computation power of GPU much better.

4https://github.com/Microsoft/LightGBM/wiki/Experiments
5LightGBM uses one bin as sentinel, thus a byte can only represent 255 bins. Similarly,
only 63 bins are used when using a 6-bit bin value representation.

https://github.com/huanzhang12/lightgbm-gpu

GPU-acceleration for Large-scale Tree Boosting

REFERENCES
[1] Tin Kam Ho. Random decision forests. In Proceedings of the Third International

Conference on Document Analysis and Recognition (Volume 1) - Volume 1, ICDAR
’95, pages 278–, Washington, DC, USA, 1995. IEEE Computer Society.

[2] Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.
[3] Andy Liaw and Matthew Wiener. Classification and regression by random forest.

R News, 2(3):18–22, 2002.
[4] Jerome H. Friedman. Greedy function approximation: A gradient boosting ma-

chine. Annals of Statistics, 29(5):1189–1232, 2001.
[5] Rie Johnson and Tong Zhang. Learning nonlinear functions using regularized

greedy forest. IEEE transactions on pattern analysis and machine intelligence,
36(5):942–954, 2014.

[6] Ping Li, Christopher J. C. Burges, and Qiang Wu. Mcrank: Learning to rank using
multiple classification and gradient boosting. In NIPS, 2007.

[7] Tianqi Chen and Carlos Guestrin. XGBoost: A scalable tree boosting system. In
KDD, pages 785–794. ACM, 2016.

[8] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma,
Qiwei Ye, and Tie-Yan Liu. Lightgbm: A highly efficient gradient boosting
decision tree. In Advances in Neural Information Processing Systems, pages
3149–3157, 2017.

[9] Firas Abuzaid, Joseph K. Bradley, Feynman T. Liang, Andrew Feng, Lee Yang,
Matei Zaharia, and Ameet S. Talwalkar. Yggdrasil: An optimized system for
training deep decision trees at scale. In NIPS, 2016.

[10] Qi Meng, Guolin Ke, Taifeng Wang, Wei Chen, Qiwei Ye, Zhi-Ming Ma, and
Tie-Yan Liu. A communication-efficient parallel algorithm for decision tree. In
NIPS, 2016.

[11] Yisheng Liao, Alex Rubinsteyn, Russell Power, and Jinyang Li. Learning random
forests on the GPU. New York University, Department of Computer Science, 2013.

[12] Rory Mitchell and Eibe Frank. Accelerating the XGBoost algorithm using GPU
computing. PeerJ Preprints, 5:e2911v1, 2017.

	1 Introduction
	2 Proposed Algorithm
	3 Experimental Results
	References

