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ABSTRACT
We introduce a class of video understanding models that aims
to improve efficiency for both dense and sparse tasks, e.g. per-
frame human pose estimation and per-sequence action recognition.
Leveraging operation pipelining and variable update rates, these
models consolidate an internal state and perform a minimal amount
of computation (e.g. as few as two convolutional layers) for each
new frame to produce an output. The models are still very deep,
with dozens of such operations being performed but in a pipelined
fashion that enables depth-parallel computation. We demonstrate
that the accuracy of the parallel models is comparable to that of
sequential models, setting up the stage for more efficient video
understanding.

1 EFFICIENT CAUSAL VIDEO PROCESSING
We are interested in improving the efficiency of deep video under-
standing networks for general temporal tasks such as navigating a
scene, tracking objects and people, or recognising actions in videos,
in the causal setting, i.e. frame-by-frame and without looking into
the future. We study two general design principles for improving
efficiency that can be applied to any video network: (i) pipelining
with skip connections (see fig. 1), and (ii) exponentially diminishing
clock rates along network depth, similar to 3D ConvNets [2, 15].

Let Γθ be a deep function approximator parametrised by θ having
D layers, which perform non-linear operations Γd ∈{1,D } on their
inputs. For ConvNets, this operation is typically represented by
k > 0 sequential convolutions each followed by a non-linearity such
as ReLu. Given a video sequence with n frames fi ∈{1,n } and frame
rate f , let G be the oriented graph obtained by unrolling the model
over time (see Fig. 1). The nodes of the graph represent the non-
linear operations and the oriented edges are the (tensor) activations
transferred between them, establishing control dependencies. For
simplicity and without loss of generality, we assume that every
operation of the network can be computed in one cycle of duration
r . We define the latency l of the model as the interval between the
moment when a new frame is available and the moment when the
network output for that frame is available. Real-time execution is
achieved iff l ≤ f . We define throughput as the output rate, i.e. how
often does the network produce an output.

∗Complete version of this manuscript is currently under review in CVPR2018.
†Shared first author.

Figure 1: Top: Standard (sequential) deep video network. Bot-
tom left: pipelinedmodelwhere layers execute in parallel re-
sulting in higher throughput. Bottom right: pipelinedmodel
with feedforward and feedback skip connections, which re-
duce latency. Vertical axis represents network depth, hori-
zontal axis represents time measured in video frames. For
simplicity, we assume each layer takes as much time to exe-
cute as loading one frame.

1.1 Pipelining with skip connections
State-of-the-art computer vision systems that operate on videos,
e.g. object detectors [10, 11], are most of the time inspired by image
models and have, at any point in time, a single layer that is actually
active, i.e. a single layer that processes the current frame, whilst all
the other layers (maybe hundreds of them) wait for their turn to
process the data. This is due to the dependency rule that underlies
the computation of a network’s output: oid = Γd (o

i−1
d−1) for d ∈

{1,D}, i ∈ {1,n}, oi1 = fi . This rule is sequential in both depth and
time. Every new frame goes through the whole network, one layer
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at a time, before the output is known and another frame can be
processed1. The latency of this sequential model for frame fi is
given by lsi = i × D × r − f × (i − 1). If D × r ≤ f , real-time
execution is achieved for every frame. If not, the latency of the
network increases over time almost linearly with the number of
already processed frames. Existing models deal with this issue by
skipping frames, artificially increasing f , i.e. lower frame rate and
implicitly lower throughput 1/(D × r ); see fig. 1, top.

Mechanisms to counteract the high latency and low throughput
due to sequential operation exist in both biological and human-
designed systems. Biological neurons are not tremendously fast,
but they come in large numbers and operate in a massively parallel
fashion [16]. General-purpose computer processors use efficient
pipelining strategies. We propose a similar pipelining design for
deep video networks, which, in turn, enables depth-parallel process-
ing; see Fig. 1, bottom left. The model still has real-time execution
if D × r ≤ f . But if not, the model now has guaranteed constant
latency lp = D × r , irrespective of the number of already processed
frames. This latency is equal to the latency of the sequential model,
but importantly, the throughput is high 1/r in this case.

Additionally, skip connections can be used to reduce this con-
stant latency further so that real-time execution can be achieved
irrespective of the depth of the model; see Fig 1, bottom right. How-
ever, feedforward skip connections can damage the performance
of the network due to the reduced computation depth. To counter-
act this issue, we add feedback skip connections that enhance the
context available at every time step.

1.2 Causal 3D ConvNets
Temporal tasks require scene representations that encode all the
attributes relevant to the task, e.g. object category, shape, relative
position, direction of motion etc. These representations must be
continuously updated to reflect the scene dynamics. However, not
all attributes change at the same rate: objects do not change cat-
egory very often if at all, but their position can vary extremely
fast. Using a unique update rate for the entire representation – as
many deep video models currently do [1, 8, 9, 13, 14] – reveals as
sub-optimal2 [12]. We modify the model in Fig. 1, bottom right,
such that the deeper layers responsible for extracting more and
more abstract features, have an exponentially reduced update rate.
We employ 3D filters to capture time dependencies and train the
models using backprop-through-time, making sure the output for
any new input frame depends only on past inputs while storing as
internal state the set of activations required for all temporal kernels.
When a new frame is available, the network needs to only extract
the fast-varying (shallow) features from the new frame to produce
an output.

2 EXPERIMENTS
The architecture we experimented with, called D3D, is shown in
fig. 2, with output layers for action recognition and human pose
heatmap estimation. We incorporate skip connections similar to

1Time-budget models [4, 6] use emergency exits to output the predictions computed
thus far when time runs out, but they still process the data sequentially.
2Models using 3D convolutions incorporate different update rates naturally by using
different time strides along depth [2, 15], but this usage is not trivial in causal settings.

Figure 2: D3D model composed of densely-connected
blocks [3]. Training uses 64-frame sequences and backprop-
through-time. Testing is done on whole videos. Each block
shows kernel sizes (time x width x height) and strides.

the popular DenseNet image model [3] – mini-blocks within each
block send skip connections to all the other mini-blocks after it.
In our case, these skip connections are in time, as shown in fig. 1.
The top-down connections arise from the end of each block (y0
to y4). We use the Kinetics dataset [5] for both tasks. For actions,
we use ground-truth labels and evaluate using top-1 accuracy. For
pose, we generate "ground-truth" keypoints automatically using
a state-of-the-art pose estimation model [7] and evaluate using
cross-entropy loss on the test set.

We trained 3 versions of the D3D model with different degrees
of parallelism: a fully sequential one, an almost fully-parallel model
(k = 2), and a partly parallel model (k = 10), i.e. 10 sequential
convolutions are performed before transferring the data to the next
unrolling step. The results on the Kinetics test set are presented in
table 1. It can be observed that the model with partial parallelism is

Model Act. recogn. Pose estim. Speedup
D3D-par (k = 2) 53.9 0.39 9x
D3D-par (k = 10) 64.9 0.29 3.3x
D3D-seq (k = 58) 66.5 0.26 1x

Table 1: First column: D3D models with different levels of
parallelism. Second column: test top1-accuracy for action
recognition (higher is better). Third column: cross-entropy
test loss for pose estimation (lower is better). Fourth col-
umn: throughput improvement (fps) achievable by paral-
lelization.

almost on-par with the sequential model, whereas the almost fully
parallel one has a slightly lower performance. This points to the
fact that our networks can be trained to withstand a significant
degree of parallelism without major loss in performance. Our exper-
iments were performed using TensorFlow, which does not support
scheduling ops in parallel on the GPU, so we cannot measure yet
practical efficiency gains, only a rough approximation of the upper
bound shown in table 1, right column – this is left as future work.
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