
A Framework for Searching a Predictive Model
Yoshiki Takahashi

Tokyo Institute of Technology
takahashi.y.bz@m.titech.ac.jp

Masato Asahara
NEC System Platforms Research Labs

masahara@nec-labs.com

Kazuyuki Shudo
Tokyo Institute of Technology

shudo@c.titech.ac.jp

1 INTRODUCTION
In data analytics with machine learning (ML) technology, data sci-
entists have to explore massive number of possibilities of predictive
model designs to build highly-accurate predictive models for each
prediction problem because there is no almighty predictive model
available as no free lunch theorem [12] shows. The possibilities
of model designs can be classified into three major aspects: 1) al-
gorithm choice, 2) hyperparameter tuning of each ML algorithm
and 3) preprocessing strategies for training data such as missing
value imputation policies, random sampling ratio and convert too
fine category information into generalized one, e.g., generate state
name information from address information, and so on. Although
many approaches to efficiently completing the search of model
design possibilities have been proposed [3, 4, 9, 11], data scientists
essentially have to spend much time on the work on model design
because it is essentially a non-convex optimization problem.

To release data scientists from the issue, we are developing a
novel framework for automatic model design. This paper introduces
our idea which enables data scientists to quickly find a predictive
model which achieves enough high accuracy with no ‘hand-made’
operations including data preprocessing part. Our contributions
in this work are techniques that enable high-speed exploration of
model design possibilities. They are summarized below.
1) A distributed computing framework: It leverates both in-memory
computing platforms such as Apache Spark [13] and highly-tuned
machine learning implementations such as TensorFlow [2] and XG-
Boost [5]. Not only can it do algorithm choice and hyperparameter
tuning, but it can explore preprocessing strategies unlike existing
frameworks. The preprocessed data should be fed to training in a
no-memory-copy manner though it is in development.
2) Low-frequent data collection for ML executions: High frequent
data communication induces much wait time to ML algorithm exe-
cutions. To avoid the increase of data communication, our frame-
work employs low-frequent data collectionmechanismwhich keeps
the frequency to be constant to the number of preprocessing strate-
gies.
3) Task scheduling based on predicted training times for ML con-
figurations: The execution time of each worker varies heavily de-
pending on a ML configurations, that is a set of algorithm and its
hyperparameters. Our framework assigns a set of configurations
to a worker so as to minimize the execution time of the longest-
lasting worker by estimating the completion time of ML algorithm
execution with the prediction model for the time.

Our preliminary evaluations demonstrate that our framework
automatically produces an enough highly-accurate predictivemodel
in reasonable time. The results show that the predictive model
generated in the framework achieves higher accuracy of prediction
than that of simple predictive model designs in around 15 hours
with 32 CPU cores even if the cumulative time of the model designs
is several days.

Figure 1: Our framework works as follows: (1) collect pre-
proccesed data from all workers, (2) generatemachine learn-
ing configurations, (3) assign a set of configurations to work-
ers, (4) train predictive models with the configurations.

2 RELATEDWORK
Several pieces of prior work [3, 4, 9, 11] present the generation
algorithm of hyperparameter candidates. It is a part of future work
to incorporate them with our framework.

Our work is closely related to HyperDrive [8] and TuPAQ [10],
both of which focus on the exploration of model designs. In contrast,
our framework can also explore pereprocessing strategies with low-
frequent data collection described in Section 3.1. Additionally, we
are trying to eliminate memory copy from preprocessing.

3 FRAMEWORK DESIGN
Figure 1 illustrates an overview of the proposed framework. The
process of the framework consists of two major parts: data prepro-
cessing part for training data and execution part for ML algorithm
implementations. The data preprocessing part executes variety of
data preprocessing strategies on raw input data such as different
missing value imputation policies and different feature engineering
strategies. And then, it generates training data from the prepro-
cessed input data. The data preprocessing part utilizes the function-
ality of the distributed computing system such as Spark SQL and
Spark ML. On the other hand, the execution part for ML algorithm
implementations runs variety of ordinary implementations of ML
algorithm such as Google TensorFlow and XGBoost in parallel with
different hyperparameter configurations on the same distributed
computing system as the data preprocessing part was performed.
It utilizes the parallel computation functionality of the distributed
computing system, e.g., Map task execution of MapReduce comput-
ing systems [6]. Between the two parts, the framework converts



SysML 2018, February 2018, Stanford, CA Yoshiki Takahashi, Masato Asahara, and Kazuyuki Shudo

the format of the training data from the one for the distributed
computing system such as RDD [13] to the one for ML algorithm
implementations such as a Java matrix object in single worker’s
memory.

Because the number of combinations of ML algorithm imple-
mentations and their hyper paramters becomes several thousands
order, the major computation part of the framework is the execution
part of ML algorithm implementation. To accelerate the part, the
framework employs two techniques: low-frequent data collection
and prediction-based task scheduler.

3.1 Low-frequent data collection
Since the ordinary ML algorithm implementations utilize shared-
memory architecture, training data in the distributed memory on
the distributed computing system has to be collected to the memory
of a worker which executes the ML algorithm implementations.
If the framework performs the collection of preprocessed data on
every workers at every execution of data preprocessing strategies,
O(lw) times of data communication is kicked, where l is the number
of preprocessing strategies andw is the number of workers.

To avoid the linearly-increased overhead to l , the framework
employs low-frequent data collection mechanism. The mechanism
first performs data preprocessing by using all workers and store the
resulted data into the distributed memory among workers. Second,
it assigns w

l workers for each preprocessing strategy. Third, each
worker collects preprocessed data based on the strategy the worker
is assigned for, and converts the data with a compatible format for
ML algorithm implementation. Forth, the framework distributes
execution tasks of ML configurations, that is a set of algorithm
and hyperparameters, to each worker in the same-strategy-hold
w
l workers. Finally, the framework starts the execution of the task
on every CPU cores of workers in parallel. This design reduces the
frequency of data collection tow , which is constant to increase of
preprocessing strategies.

3.2 Task scheduling based on predicted
training time

To minimize the execution time of the longest-lasting worker, our
framework employs task scheduling based on predicted times for
ML configurations. The scheduler first estimates the completion
time of each combination of ML algorithm and hyperparameter
configuration by using a pre-learned predictive model for the com-
pletion time. The scheduler then calculates a task assignment plan
which approximately balances the completion time of tasks assigned
to a worker by solving a bin-packing problem with the estimated
completion time. The key idea of this task scheduling is to assign
a task from longer one in a round-robin fashion on the basis of
the estimated completion time. Current prototype utilizes a linear
regression model as the predictive model for the completion time
of ML algorithm.

4 PRELIMINARY EVALUATION
We implemented the prototype of the framework using Apache
Spark 1.6.0 and performed preliminary evaluation to demonstrate
if the framework can produce an enough high-accurate predictive
model at high speed for the number of workers. The prototype used

Figure 2: Completion time of model design.

Table 1: Test accuracy of the best model obtained by each
method.

Classification error AUC

Proposed framework 0.129 0.862
Gradient boosting tree of XGBoost 0.131 0.860
Logistic regression 0.136 0.714

the ML algorithm implementation for the multi-layer perceptron
model of TensorFlow and that for the gradient boosting tree model
of XGBoost. In the evaluation the framework explored 495 and 480
combinations of grid-based hyperparameter search space for the
multi-layer perceptron and the gradient boosting tree, respectively.
In the evaluation we used the public competition data for KDDCUP
2015 [1]. The workers used in the evaluation employed up to two
2.5GHz CPU cores and 128GB memory.

Figure 2 shows the completion time of model design for num-
ber of CPU cores. The result demonstrates that it was completed
to explore 975 possibilities of model designs among learning of
multi-layer perceptron models and gradient boosting tree models
in around 900 minutes, which lasted several days when we ran
the exploration serially. The result also shows that our framework
achieved almost linear performance improvement to the number
of CPU cores. This suggests that the framework has a potential to
increase the execution performance by simply adding workers.

Table 1 compares the best accuracy of the framework and the
accuracy of a gradient boosting tree model learned with XGBoost
and a logistic regression model learned with scikit-learn [7]. The
hyperparameters used in the learning of the gradient boosting tree
model and logistic regression model are default configurations of
XGBoost and scikit-learn, respectively. The result shows that the
framework achieved the highest accuracy in both of classification
error and AUC.

5 CONCLUSION
This paper presents our framework for automatic model design,
which enables data scientists to build a highly-accurate predictive
model at high speed with no ‘hand-made’ operations.



A Framework for Searching a Predictive Model SysML 2018, February 2018, Stanford, CA

REFERENCES
[1] 2015. KDD CUP 2015. (2015). https://biendata.com/competition/kddcup2015/.
[2] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, et al.
2016. Tensorflow: Large-scale machine learning on heterogeneous distributed
systems. arXiv preprint arXiv:1603.04467 (2016).

[3] James Bergstra and Yoshua Bengio. 2012. Random search for hyper-parameter
optimization. Journal of Machine Learning Research 13, Feb (2012), 281–305.

[4] James Bergstra, Dan Yamins, and David D Cox. 2013. Hyperopt: A python
library for optimizing the hyperparameters of machine learning algorithms. In
Proceedings of the 12th Python in Science Conference. 13–20.

[5] Tianqi Chen and Carlos Guestrin. 2016. Xgboost: A scalable tree boosting system.
In Proceedings of the 22nd acm sigkdd international conference on knowledge
discovery and data mining. ACM, 785–794.

[6] Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: simplified data processing
on large clusters. Commun. ACM 51, 1 (2008), 107–113.

[7] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss,
Vincent Dubourg, et al. 2011. Scikit-learn: Machine learning in Python. Journal
of Machine Learning Research 12, Oct (2011), 2825–2830.

[8] Jeff Rasley, Yuxiong He, Feng Yan, Olatunji Ruwase, and Rodrigo Fonseca. 2017.
Hyperdrive: Exploring hyperparameters with POP scheduling. In Proceedings of
the 18th International Middleware Conference, Middleware, Vol. 17.

[9] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. 2012. Practical bayesian
optimization of machine learning algorithms. In Advances in neural information
processing systems. 2951–2959.

[10] Evan R. Sparks, Ameet Talwalkar, Daniel Haas, Michael J. Franklin, Michael I.
Jordan, and Tim Kraska. 2015. AuttomatingModel Search for Large Scale Machine
Learning. In Proceedings of the Sixth ACM Symposium on Cloud Computing (SoCC
’15). ACM, New York, NY, USA, 368–380. https://doi.org/10.1145/2806777.2806945

[11] Chris Thornton, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. 2013.
Auto-WEKA: Combined Selection and Hyperparameter Optimization of Clas-
sification Algorithms. In Proceedings of the 19th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD ’13). ACM, New York,
NY, USA, 847–855. https://doi.org/10.1145/2487575.2487629

[12] David H Wolpert, William G Macready, et al. 1995. No free lunch theorems for
search. Technical Report. Technical Report SFI-TR-95-02-010, Santa Fe Institute.

[13] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, and Ion
Stoica. 2010. Spark: Cluster computing with working sets. HotCloud 10, 10-10
(2010), 95.

https://doi.org/10.1145/2806777.2806945
https://doi.org/10.1145/2487575.2487629

	1 Introduction
	2 Related Work
	3 Framework Design
	3.1 Low-frequent data collection
	3.2 Task scheduling based on predicted training time

	4 Preliminary Evaluation
	5 Conclusion
	References

