
Distributed Placement of Machine Learning Operators for IoT
applications spanning Edge and Cloud Resources

Tarek Elgamal
University of Illinois at Urbana-Champaign

telgama2@illinois.com

Atul Sandur
University of Illinois at Urbana-Champaign

sandur2@illinois.com

Klara Nahrstedt
University of Illinois at Urbana-Champaign

klara@illinois.edu

Gul Agha
University of Illinois at Urbana-Champaign

agha@illinois.edu

ABSTRACT
Internet of Things (IoT) applications generate massive amounts of
real-time data that are typically processed for carrying out complex
tasks such as vision and speech processing. Owners of such data
strive to make predictions/inference from large streams of complex
data such as video feeds, often using pre-trained neural network
models. A typical deployment of IoT applications includes edge de-
vices to acquire the input data and provide processing and storage
capacity closer to the location where the data is captured. This can
obviate the need to move all the data/processing to a remote cloud
service. However, since edge devices are limited in computational
capacity, we need to determine the optimal placement of opera-
tions between edge and remote cloud resources to optimize the
performance of neural network model inference. In this paper we
propose an algorithm to decide the partitioning of neural network
operations across edge and cloud resources. Our algorithm is linear
in the number of operations (m) of the neural network model and
the overall complexity is O(m · (L!) · L), where L is the number of
resources (typical deployments include one edge resource and the
cloud, in which case L is 2).

1 INTRODUCTION
The continued growth of Internet of Things (IoT) applications re-
quires the ability to extract insights from massive amounts of data
streams observed at real-time. The data could be collected from
multiple input sources such as: (1) surveillance cameras for traf-
fic monitoring and intrusion detection, (2) wearable cameras and
medical devices for healthcare, (3) sensors deployed on bridges and
buildings in smart cities.

Due to limited computational capability of IoT devices that col-
lect such data, the conventional approach of performing analytics
on data streams is to send them to the cloud and leverage its pow-
erful resources to execute analytics remotely. However, given the
tremendous amount of data transfer often required (e.g., when video
data is collected), the latency and bandwidth requirements become
very high. This calls for an alternative paradigm in which ML mod-
els are trained in the cloud and then deployed on the edge [4] for
near real-time inference (i.e. execution of pre-trained ML model
operations).

ML models consist of a large number of dependent operations
modeled as dataflow graphs [1]. Each operation describes com-
putation on the incoming data such as matrix multiplication or
convolution. A key challenge is to automatically decide how to par-
tition operations by assigning them to edge and cloud resources, in
order to minimize the overall completion time of the entire graph
of operations. Our work addresses this problem and makes the
following contributions:

(1) We propose a general model for scheduling of dataflow
graphs that operate on a data stream of observations/inputs.

The model considers computation, communication and queu-
ing delays, and captures pipeline parallelism for estimating
execution time. Such pipelining arises due to multiple inputs
being processed concurrently by different operators in the
graph.

(2) We draw an analogy between operator placement problem
and Matrix Chain Ordering Problem (MCOP) which allows
us to design a dynamic programming algorithm to solve the
operator placement in O(m · (L!) · L) complexity, wherem is
the number of operators and L is the number of resources.

Other approaches based on reinforcement learning (RL) tech-
niques [3] have been proposed to solve the operator placement
problem and shown to be effective for static resource configura-
tions. However, our approach targets dynamic environments in
which connectivity between edge devices change rapidly.

2 PROBLEM DEFINITION
Given a dataflow graphG with a set of verticesGo = {o1,o2,o3, ...,om },
each vertex in the graph corresponds to one operator. Each operator
processes n inputs, where an input is one unit of data defined by
the application (e.g., tuple, video frame). Links between vertices
correspond to dataflow dependency between operators. If G has
a link from operator o1 to operator o2, then each input ni has to
be processed first by o1 before it is transmitted to o2. Let R be a
resource graph R with a set of vertices Rv = {r1, r2, r3, .., rL}. Each
resource represents an edge device (such as smartphone), interme-
diate server, or the cloud.

Each operator oi has an execution cost when placed on any of
the p resources in Rv . The execution cost for oi is represented
as (toi,1 , ...toi,L ) and the intermediate data is represented as di .
Each resource rk is connected to some other resource rl with con-
nection speed skl . The operator placement problem is defined as
the mapping M of operators to resources such that the comple-
tion time of the last operator om is minimized. We define M as
{M : Go → Rv =⇒ M(oi ) = {rl ∈ Rv }}

3 PROPOSED APPROACH
The key idea in our approach is to leverage the fact that each
operator in a dataflow graphG has to process n inputs. Hence, two
dependent operators can be concurrently processing inputs in a
pipeline fashion. For example, the first input that was processed
by operator o1, can now be processed by o2 while the second input
is being processed in parallel by o1. This pipelining behavior is
only applicable if there are enough resources to execute multiple
operators in parallel. For simplicity, we assume that each resource
has one thread or unit of computation, however, the method can
be generalized to resources with multiple threads or containers.
The pipelining behavior can reduce the computation time through
parallelism however, it introduces a transmission latency when two



Figure 1: Different
operator
placements

Figure 2: Corresponding placement graph.
The difference between dashed and solid
edges, alongwith other graph details are dis-
cussed in section 3.2

dependent operators are placed on different resources. Hence, the
problem becomes how to choose which operators to run in parallel
in order to reduce the overall computation and communication
time. Consider the following example:

3.1 Illustrative Example
Assume that we have a sequence of three operators o1, o2, o3 and
two different resources: (1) an edge device E, (2) a cloud VMC . The
possible options to place our operators between the two resources
are shown in Figure 1. Each line in the figure shows a different
possibility for operator placement. The subscript (1,E) means that
operator 1 is placed on device E and operators inside parentheses
show that they are executed in a pipelined manner.

Using the representation in Figure 1 for the placement of op-
erators on resources helps us draw an analogy between operator
placement and the matrix chain ordering problem (MCOP) [2]. Re-
call that in MCOP, the problem is to find the most efficient way
to multiply a given sequence of matrices together. There exists a
dynamic programming algorithm for solving MCOP in polynomial
time. Section 3.2 describes how this analogy can be similarly used
to reduce the complexity of solving operator placement problem
from exponential to polynomial time in the number of operators.

3.2 Solution
In order to represent the solutions in Figure 1, we construct the
placement graph shown in Figure 2. The dashed edges in placement
graph show connections between operators running in parallel
(i.e., the ones collocated inside the parentheses), however the solid
edges are between operators at the boundaries of two sets of paren-
theses. The dashed edges have resource cost because going from
one dashed edge to another means that you are executing the next
operator on a new thread or a new server which results in increased
overall resource consumption. The solid edges are the ones that
have computation and communication costs (see Figure 2). The
intuition for reduction in placement problem complexity is that the
paths [(o1,E ,o2,C ), (o3,C )] and [(o1,C ,o2,E ), (o3,C )] have a common
solid edge going from (o3,C ) to the END node. There are however
two separate edges going to (o3,C ), which help differentiate be-
tween the two paths, one edge has the cost of path (o1,E ,o2,C ) and
the other has the cost of path (o1,C ,o2,E ).

We note that the shortest path between start and end nodes is
the solution of the operator placement problem. For example, if the
shortest path is [(o1,E ,o2,C ), (o3,C )], then the placement will be o1
on device E while o2 and o3 are on the device C .

Figure 3: Execution of tasks o1,E and o2,C in parallel in dif-
ferent devices.

Figure 4: Scalability comparison between our proposed ap-
proach and brute force approach.

Limitations: Our approach has an implicit assumption that
when operators (o1,E ,o2,C ) are executed concurrently, they will
fully utilize available resources and that’s why (o3,C ) has to wait
for deviceC resources to be free. However, this may not be the case;
in the future, we plan to explore the optimal number of inputs that
can be processed concurrently by o2 to fully utilize device C .

3.3 Cost Calculation:
We describe how to calculate the overall computation and com-
munication cost of operators inside the parentheses in figure 2,
such as cost of (o1,E ,o2,C ) in the path [(o1,E ,o2,C ), (o3,C )]. Figure 3
illustrates how o1,E and o2,C operators are processing inputs in
a pipeline fashion. Let’s assume we have 3 video frames and two
operators o1 and o2 that process each video frame in sequence. The
first operator is placed on device E and the second on device C .
Frame 1 is first provided to operator o1 and then transmitted to
deviceC where operator o2 can be applied to it, while operator o1 is
being applied to frame 2 concurrently. The overall cost is the time
for the last video frame to finish execution at o2. The cost of the
nth video frame is given by:

Cost((o1,E ,o2,C )) = (n − 1)to1,E + to1,E + tr {E → C} + to2,C
where tr {E → C} is the cost of transmitting data from E to C .

4 EVALUATION
We evaluate the scalability of our approach in terms of time to
search for a placement that minimizes the operators’ execution
time. We compare our solution with a brute force (BF) approach
that searches over all possible operator placements. BF searches
over O(rm ) solutions, wherem is the number of operators and r
is the number of resources. We vary the number of operators in
the input graph. Both approaches have the same placement result
for instances in which BF finished in reasonable time (up to 5
operators). Moreover, we show the scalability of our approach in
Figure 4. Results show that the proposed algorithm linearly scales
in the number of operators as opposed to an exponential increase
in the running time of BF approach.

2



REFERENCES
[1] MartÃŋn Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,
Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Leven-
berg, Dan ManÃľ, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike
Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda ViÃľgas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.
2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed
Systems. (2015). http://download.tensorflow.org/paper/whitepaper2015.pdf

[2] Phillip G. Bradford, Gregory J. E. Rawlins, and Gregory E. Shannon. 1998. Efficient
Matrix Chain Ordering in Polylog Time. SIAM J. Comput. 27, 2 (1998), 466–490.
DOI:http://dx.doi.org/10.1137/S0097539794270698

[3] Azalia Mirhoseini, Hieu Pham, Quoc Le, Mohammad Norouzi, Samy Bengio,
Benoit Steiner, Yuefeng Zhou, Naveen Kumar, Rasmus Larsen, and Jeff Dean.
2017. Device Placement Optimization with Reinforcement Learning. https:
//arxiv.org/abs/1706.04972

[4] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu. 2016. Edge Computing: Vision and
Challenges. IEEE Internet of Things Journal 3, 5 (Oct 2016), 637–646. DOI:http:
//dx.doi.org/10.1109/JIOT.2016.2579198

3

http://download.tensorflow.org/paper/whitepaper2015.pdf
http://dx.doi.org/10.1137/S0097539794270698
https://arxiv.org/abs/1706.04972
https://arxiv.org/abs/1706.04972
http://dx.doi.org/10.1109/JIOT.2016.2579198
http://dx.doi.org/10.1109/JIOT.2016.2579198

	Abstract
	1 Introduction
	2 Problem Definition
	3 Proposed Approach
	3.1 Illustrative Example
	3.2 Solution
	3.3 Cost Calculation:

	4 Evaluation
	References

