
Finding Heavily-Weighted Features
with the Weight-Median Sketch

Extended Abstract

Kai Sheng Tai, Vatsal Sharan, Peter Bailis, Gregory Valiant
Stanford University

ABSTRACT
We introduce the Weight-Median Sketch, a sub-linear space data
structure that captures the most heavily weighted features in linear
classifiers trained over data streams. This enables memory-limited
execution of several statistical analyses over streams, including on-
line feature selection, streaming data explanation, relative deltoid
detection, and streaming estimation of pointwise mutual informa-
tion. On a standard binary classification benchmark, the Weight-
Median Sketch enables estimation of the top-100 weights with 10%
relative error using two orders of magnitude less space than an
uncompressed classifier.

1 INTRODUCTION
Memory-efficient sketching algorithms are a well-established tool
in stream processing tasks such as frequent item identification [4,
5, 16], quantile estimation [10], and approximate counting of dis-
tinct items [9]. Sketching algorithms compute approximations of
these quantities in exchange for significant reductions in memory
utilization. Therefore, they are a good choice when highly-accurate
estimation is not essential and practitioners wish to trade off be-
tween memory usage and approximation accuracy [3, 24].

Simultaneously, a wide range of streaming analytics workloads
can be formulated as learning problems over streaming data. In
streaming data explanation [1, 15], analyses seek to explain the
difference between subpopulations in the data (e.g., between an
inlier class and an outlier class) using a small set of discriminative
features. In network monitoring, analyses seek to identify sets of
features (e.g., source/destination IP addresses) that exhibit the most
significant relative differences in occurrence between streams of
network traffic [6]. In natural language processing on text streams,
several applications require the identification of strongly-associated
groups of tokens [8]; this pertains more broadly to the problem of
identifying groups of events which tend to co-occur.

These tasks can all be framed as instances of streaming classi-
fication between two or more classes of interest, followed by the
interpretation of the learned model in order to identify the features
that are the most discriminative between the classes. Further, as
is the case with classical tasks like identifying frequent items or
counting distinct items, these use cases typically allow for some
degree of approximation error in the returned results. We are there-
fore interested in algorithms that offer similar memory-accuracy
tradeoffs to classical sketching algorithms, but in the context of
online learning for linear classifiers.

SysML’18, February 2018, Stanford, CA
2018. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

(xt ,yt) ∇L̂t

“foo” 2.5
“bar” -1.9
“baz” 1.8

streaming
data

gradient
estimates

sketched
classifier

estimates of
largest weights

update

query

Figure 1: Streaming updates to a sketched classifier with ap-
proximations of the most heavily-weighted features.

We introduce a new sketching algorithm—the Weight-Median
Sketch (WM-Sketch)—for binary linear classifiers trained on stream-
ing data.1 As each new labeled example, (x,y) with x ∈ Rd , y ∈
{−1,+1}, is observed in the stream, we update a fixed-size data struc-
ture in memory with online gradient descent. This data structure
represents a compressed version of the full d-dimensional classifier
trained on the same data stream. This structure can be efficiently
queried for estimates of the top-K highest-magnitude weights in the
classifier. Importantly, we show that it suffices that this compressed
data structure is of size polylogarithmic in the feature dimension
d . Therefore, the WM-Sketch can be used to realize substantial
memory savings in high dimensional classification problems where
the user is interested in obtaining a K-sparse approximation to the
classifier, where K ≪ d .

2 THEWEIGHT-MEDIAN SKETCH
The main data structure in the WM-Sketch is identical to that used
in the Count-Sketch [4]. The sketch is parameterized by size k ,
depth s , and width k/s . We initialize with a size-k array set to zero.
We view this array z as being arranged in s rows, each of width k/s .

The high-level idea is that each row of the sketch is a compressed
version of the model weight vector w ∈ Rd , where each index
i ∈ [d] is mapped to some assigned bucket j ∈ [k/s]. Since k/s ≪ d ,
there will be many collisions between these weights; therefore, we
maintain s rows—each with different assignments of features to
buckets—in order to disambiguate weights.

Updates. For each feature i , we assign a uniformly random index
hj (i) in each row j ∈ [s] and a uniformly random sign σj (i). Given
an update ∆i ∈ R to weight wi , we apply the update by adding
σj (i)∆i index hj (i) of each row j . Denoting this random projection
by the matrix A ∈ {−1,+1}k×d , we can then write the update ∆̃ to
z as ∆̃ = A∆. In practice, this assignment is done via hashing.

Instead of being provided the updates ∆, we must compute them
as a function of the input example (x,y) and the sketch state z. Given
the convex and differentiable loss function ℓ, we define the update
to z as the online gradient descent update for the sketched example
(Ax,y). In particular, we first make a prediction τ = (1/s)zTAx,
1The full version of this paper is available at [19].

https://doi.org/10.1145/nnnnnnn.nnnnnnn

SysML’18, February 2018, Stanford, CA Tai et al.

Algorithm 1:Weight-Median (WM) Sketch
input: size k , depth s , loss function ℓ, ℓ2-regularization

parameter λ, learning rate schedule ηt
initialization

z← s × k/s array of zeroes
Sample Count-Sketch matrix A
t ← 0

function Update(x, y)
τ ← 1

s z
TAx ▷ Prediction for x

z← (1 − ληt)z − ηty∇ℓ (yτ)Ax ▷ Update with ℓ2 reg.
t ← t + 1

function Query(i)
return output of Count-Sketch retrieval on z

and then compute the gradient update ∆̃ = −ηy∇ℓ (yτ)Ax with
learning rate η.

For intuition, we can compare this update to the Count-Sketch
update rule [4]. In the frequent-items setting, the input x is a one-
hot encoding for the observed item. The update to the Count-Sketch
state zcs is simply ∆̃cs = Ax, whereA is defined identically as above.
Therefore, our update rule is simply the Count-Sketch update scaled
by the constant −ηy∇ℓ(yzTAx/s). However, an important detail to
note is that the Count-Sketch update is independent of the sketch
state zcs, whereas the WM-Sketch update does depend on z. This
cyclical dependency between the state and state updates is the main
challenge in our analysis of the WM-Sketch.

Queries. To obtain an estimate ŵi of the ith weight, we return the
median of the values σj (i) · zj,hj (i) for j ∈ [s]. This is identical to
the query procedure for the Count-Sketch.

Analysis. We show that for feature dimension d and with success
probability 1 − δ , we can learn a compressed model of dimension
O
(
ϵ−4 log3 (d/δ)

)
that supports approximate recovery of the opti-

mal weight vector w∗ over all the examples seen so far, where the
absolute error of each weight estimate is bounded above by ϵ ∥w∗∥1.
For a given input vector x, this structure can be updated in time
O
(
ϵ−2 log2 (d/δ) · nnz(x)

)
. For formal statements of our theorems,

proofs, and additional discussion of the conditions under which
this result holds, see the full version of the paper [19].

Active-SetWeight-Median Sketch (AWM-Sketch). We can sig-
nificantly improve the recovery accuracy of the WM-Sketch in
practice using a simple, heuristic extension. To efficiently track the
top elements across sketch updates, we can use a size-K min-heap
ordered by the absolute value of the estimated weights. Weights
that are already stored in the heap need not be tracked in the sketch;
instead, the sketch is updated lazily only when the weight is evicted
from the heap. Additionally, the heap estimates are used to compute
the sketch updates instead of querying values from the sketch. In
practice, this trick can improve recovery accuracy by an order of
magnitude without any additional space usage.

3 EVALUATION

Classification Benchmarks. We evaluated the recovery error
on ℓ2-regularized online logistic regression trained on three stan-
dard binary classification datasets: Reuters RCV1 [12], malicious

0 50 100
K

1.00

1.05

1.10

1.15

1.20

1.25

re
la

tiv
e

er
ro

r

RCV1 (= 10 6)

0 50 100
K

1.00

1.05

1.10

1.15

1.20

1.25
URL (= 10 5)

Trun
PTrun
SS
Hash
WM
AWM

Figure 2: Relative ℓ2 error of estimated top-K weights vs. true
top-K weights for ℓ2-regularized logistic regression under an
8KB memory budget. The AWM-Sketch achieves lower re-
covery error across both datasets.

URL identification [13], and the KDD Algebra dataset [18, 23] (see
Fig. 2 for results on RCV1 and URL). We compared against several
memory-budgeted baselines: hard thresholding and a probabilistic
variant (Trun, PTrun), tracking frequent features with the Space
Saving algorithm (SS), and feature hashing (Hash). We found that
the AWM-Sketch achieved lower recovery error across all three
baselines. On RCV1, the AWM-Sketch achieved 4× lower error
relative to the baseline of only learning weights for frequently-
occurring features. Compared to an uncompressed classifier, the
AWM-Sketch uses two orders of magnitude less space at the cost
of 10% relative error in the recovered weights. In terms of classifi-
cation accuracy, the AWM-Sketch with an 8KB budget achieved 1%
higher error rate than an uncompressed classifier on RCV1, while
outperforming all the baseline methods by at least 1%.

Application: Network Monitoring. IP network monitoring is
one of the primary application domains for sketches and other
small-space summary methods [2, 20, 24]. Here, we focus on finding
source/destination IP addresses that differ significantly in relative
frequency between a pair of network links [6]. The AWM-Sketch
significantly outperformed a baseline using a pair of Count-Min
sketches by a factor of over 4× in recall while using the same
memory budget (32KB). These results indicate that linear classifiers
can be used effectively to identify significant relative differences
over pairs of data streams.

4 DISCUSSION AND RELATEDWORK

Sparsity-Inducing Regularization. ℓ1-regularization is a stan-
dard technique for encouraging parameter sparsity in online learn-
ing [7, 11, 14, 22]. In practice, it is difficult to a priori fix the regular-
ization parameter in order to satisfy a given sparsity budget. Our
approach first fixes a memory budget, with the property that the
approximation is better for parameter vectors with small ℓ1-norm.

Feature Hashing. Feature hashing [17, 21] is a technique where
the classifier is trained on features that have been hashed to a
fixed-width table. The AWM-Sketch with depth 1 can be seen as an
interpretability-preserving extension of feature hashing.

Relation to Approximate Heavy-Hitters. The Heavy-Hitters
problem, where the goal is to find frequently-occurring items above
a given threshold, has been extensively studied in the streaming
algorithms literature [4, 5, 16]. Our sketching algorithm for linear
classifiers can be seen as a synthesis of sketching techniques for
frequent items and algorithms for learning linear classifiers using
online convex optimization.

Finding Heavily-Weighted Features with the Weight-Median Sketch SysML’18, February 2018, Stanford, CA

ACKNOWLEDGMENTS
This research was supported in part by affiliate members and other
supporters of the Stanford DAWN project—Google, Intel, Microsoft,
Teradata, and VMware—as well as DARPA under No. FA8750-17-2-
0095 (D3M) and industrial gifts and support from Toyota Research
Institute, Juniper Networks, Keysight Technologies, Hitachi, Face-
book, Northrop Grumman, and NetApp.

REFERENCES
[1] Peter Bailis, Edward Gan, Samuel Madden, Deepak Narayanan, Kexin Rong, and

Sahaana Suri. 2017. Macrobase: Prioritizing attention in fast data. In Proceedings
of the 2017 ACM International Conference on Management of Data. ACM, 541–556.

[2] Nagender Bandi, Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi.
2007. Fast data stream algorithms using associative memories. In Proceedings of
the 2007 ACM SIGMOD international conference on Management of data. ACM,
247–256.

[3] Oscar Boykin, Sam Ritchie, Ian O’Connell, and Jimmy Lin. 2014. Summingbird: A
framework for integrating batch and onlinemapreduce computations. Proceedings
of the VLDB Endowment 7, 13 (2014), 1441–1451.

[4] Moses Charikar, Kevin Chen, and Martin Farach-Colton. 2002. Finding frequent
items in data streams. Automata, languages and programming (2002), 784–784.

[5] Graham Cormode and Shan Muthukrishnan. 2005. An improved data stream
summary: the count-min sketch and its applications. Journal of Algorithms 55, 1
(2005), 58–75.

[6] Graham Cormode and S Muthukrishnan. 2005. What’s new: Finding significant
differences in network data streams. IEEE/ACM Transactions on Networking (TON)
13, 6 (2005), 1219–1232.

[7] John Duchi and Yoram Singer. 2009. Efficient online and batch learning using
forward backward splitting. Journal of Machine Learning Research 10, Dec (2009),
2899–2934.

[8] Benjamin V Durme and Ashwin Lall. 2009. Streaming pointwise mutual informa-
tion. In Advances in Neural Information Processing Systems. 1892–1900.

[9] Philippe Flajolet. 1985. Approximate counting: a detailed analysis. BIT Numerical
Mathematics 25, 1 (1985), 113–134.

[10] Michael Greenwald and Sanjeev Khanna. 2001. Space-efficient online computa-
tion of quantile summaries. In ACM SIGMOD Record, Vol. 30. ACM, 58–66.

[11] John Langford, Lihong Li, and Tong Zhang. 2009. Sparse online learning via
truncated gradient. Journal of Machine Learning Research 10, Mar (2009), 777–801.

[12] David D Lewis, Yiming Yang, Tony G Rose, and Fan Li. 2004. RCV1: A new
benchmark collection for text categorization research. Journal of machine learning
research 5, Apr (2004), 361–397.

[13] JustinMa, Lawrence K Saul, Stefan Savage, and GeoffreyMVoelker. 2009. Identify-
ing suspicious URLs: an application of large-scale online learning. In Proceedings
of the 26th annual international conference on machine learning. ACM, 681–688.

[14] Brendan McMahan. 2011. Follow-the-regularized-leader and mirror descent:
Equivalence theorems and l1 regularization. In Proceedings of the Fourteenth
International Conference on Artificial Intelligence and Statistics. 525–533.

[15] Alexandra Meliou, Sudeepa Roy, and Dan Suciu. 2014. Causality and explanations
in databases. In VLDB.

[16] Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi. 2005. Efficient compu-
tation of frequent and top-k elements in data streams. In International Conference
on Database Theory. Springer, 398–412.

[17] Qinfeng Shi, James Petterson, Gideon Dror, John Langford, Alexander L Strehl,
Alex J Smola, and SVN Vishwanathan. 2009. Hash kernels. In International
Conference on Artificial Intelligence and Statistics. 496–503.

[18] J. Stamper, A. Niculescu-Mizil, S. Ritter, G.J. Gordon, and K.R.
Koedinger. 2010. Algebra I 2008-2009. Challenge data set from KDD
Cup 2010 Educational Data Mining Challenge. (2010). Find it at
http://pslcdatashop.web.cmu.edu/KDDCup/downloads.jsp.

[19] Kai Sheng Tai, Vatsal Sharan, Peter Bailis, and Gregory Valiant. 2017. Finding
Heavily-Weighted Features in Data Streams. arXiv preprint arXiv:1711.02305
(2017).

[20] Shoba Venkataraman, Dawn Song, Phillip B Gibbons, and Avrim Blum. 2005.
New streaming algorithms for fast detection of superspreaders. Department of
Electrical and Computing Engineering (2005), 6.

[21] Kilian Weinberger, Anirban Dasgupta, John Langford, Alex Smola, and Josh
Attenberg. 2009. Feature hashing for large scale multitask learning. In Proceedings
of the 26th Annual International Conference on Machine Learning. ACM, 1113–
1120.

[22] Lin Xiao. 2010. Dual averaging methods for regularized stochastic learning
and online optimization. Journal of Machine Learning Research 11, Oct (2010),
2543–2596.

[23] Hsiang-Fu Yu, Hung-Yi Lo, Hsun-Ping Hsieh, Jing-Kai Lou, Todd G McKenzie,
Jung-Wei Chou, Po-Han Chung, Chia-Hua Ho, Chun-Fu Chang, Yin-Hsuan Wei,

et al. 2010. Feature engineering and classifier ensemble for KDD cup 2010. In
KDD Cup.

[24] Minlan Yu, Lavanya Jose, and Rui Miao. 2013. Software Defined Traffic Measure-
ment with OpenSketch.. In NSDI, Vol. 13. 29–42.

	Abstract
	1 Introduction
	2 The Weight-Median Sketch
	3 Evaluation
	4 Discussion and Related Work
	References

