
Distributed Shared Memory for Machine Learning
Amin Tootoonchian

Intel Labs

Aurojit Panda

NYU, ICSI

Aida Nematzadeh

UC Berkeley

Scott Shenker

UC Berkeley, ICSI

1 INTRODUCTION
Distributed systems communicate and coordinate through mes-
sage passing or shared memory: in the former paradigm, threads

communicate by exchanging messages, whereas, in the latter, they

communicate by reading from and writing to directly accessible

shared memory. Due to the need for large-scale machine learning,

most existing frameworks (such as TensorFlow [1], PyTorch [7],

and Caffe [4]) implement distributed machine learning where work-

ers rely on shared memory for local communication and message

passing (e.g., using BSD sockets) for inter-node communication.

Many multiprocessing systems provide a shared memory ab-

straction. Recent theoretical and practical results [6, 8, 9] suggest

that well-designed shared-memory implementations of algorithms

such as stochastic gradient descent (SGD) can achieve impressive

speed-ups when compared to more traditional implementations. Be-

sides providing performance benefits, shared memory abstractions

also simplify application development by freeing developers from

reasoning about communication mechanisms (e.g., buffer manage-

ment, message construction, naming, timing of sends and receives).

Despite these benefits, no current ML framework uses shared mem-

ory across machine boundaries, since hardware shared memory is

not available in this setting.

The key challenge in building a software distributed shared mem-

ory (DSM) is achieving efficiency while providing an interface that

is easy to use for the programmer. Distributed shared memory im-

plementation commonly have three properties: (a) cache coherency,
(b) location transparency, and (c) need for synchronization for safe

concurrent access. They make scaling challenging.

We present an alternative DSM design, Tasvir, which relaxes

these guarantees thus sidestepping the associated shortcomings

while providing an interface that is well-aligned with the require-

ments of machine learning algorithms. It has the potential to sim-

plify state sharing and improve data movement across a large pool

of distributed workers. We show that on a multicore machine, it

performs similarly to or, in some cases, surpasses the performance

of hardware shared memory.

2 ML-FRIENDLY SHARED MEMORY
Our design provides the following interface to the user:

Versioned areas: Area is the unit of memory allocation and is con-

tiguous. Areas are atomically updated (no torn writes), versioned,

and timestamped. The latter enables threads to quantify the stale-

ness of cached copies. At least two versions of an area are hosted

on a machine: a writer and a reader version.

Ownership: Each area has a single writer which is internally

marked as the owner. Area ownership could be transferred.

Membership: Threads must subscribe to areas to start receiving a

continuous stream of updates.

Explicit synchronization: Threads are responsible for regularly
invoking a service routine at points in the application where it is

safe to do (e.g., outside the critical sections). At scheduled intervals,

the service routine blocks to initiate a synchronization to transfer

and/or apply pending updates. Threadsmay force a synchronization

if they want a local write to be immediately made visible.

Explicit write logging: Threads must inform the system of any

writes to an area. This may be automated with a compiler pass.

Synchronization intervals: Threads may specify the interval at

which internal synchronization (cross-core) and external synchro-

nization (cross-machine) must be invoked.

This interface aligns well with recent trends in machine learning

research: It embraces staleness as a first-class primitive [3, 8], sim-

plifies implementing bounded staleness [3, 5], and avoids coherency

issues [10]. It also enables an efficient DSM implementation and a

wide range of performance optimizations that are otherwise hard

to achieve.

Being explicit about state caching enables the system to use local

memory as cache (akin to COMA [2]) without a need to update or

invalidate for individual writes. Applications may decide to block

and continuously synchronize until they achieve a desired level of

freshness, but during normal operation no read or write is impeded

because of concurrency or distribution – i.e., they are all served at

local memory speed. The notion of single-writer areas allows us to

commit writes with no concern for conflicts.

Change tracking at the memory level enables cooperative inter-

nal synchronization and offloading external synchronization to be

done asynchronously by a background thread. During an internal

bulk synchronization phase, threads cooperatively parse the log

and copy modified data from writer copies to reader copies. It is

during this internal synchronization that area version numbers

and timestamps are updated if any change is found. External syn-

chronizations are invoked asynchronously by a background thread

in-between internal ones to packetize and push differential updates

to remote nodes subscribed to receive the updates. Upon receipt

of remote updates, the same background thread logs the update

and transfers it to the local writer copy. Such changes will be made

visible upon initiation of the next internal synchronization.

Scoping updates through area memberships and synchronization

periods are knobs that we expose to help applications meet a target

scale, staleness, and state distribution overhead. Coarser synchro-

nization periods result in lower update traffic and better scaling at

the expense of higher staleness (and possibly worse convergence),

while limiting area membership to neighboring nodes may help

localize update traffic to sidestep network bandwidth bottlenecks.

Our design provides several benefits for machine learning frame-

works and applications. First, it simplifies development and im-

proves performance by taking over networking and data move-

ment. This is possible because of numerous hardware and network

optimization, e.g., it speed up data movement using non-temporal

reads/writes and vector instructions, and reduces the overhead of

network transfers using performant network stacks
1
. Our current

1
Our implementation currently uses DPDK, but our design also enables RDMA to be

seamlessly incorporated.



SysML, Feb 2018, Palo Alto, California Amin Tootoonchian, Aurojit Panda, Aida Nematzadeh, and Scott Shenker

Figure 1: Runtime for Cyclades using hardware shared memory (Cyclades) and
Tasvir (Cyclades + Tasvir) as a function of threads.

implementation provides intra-machine data transfer that is com-

parable to DRAM bandwidth, and line-rate (10/40Gbps) network

transfer for cross-machine transfers. Second, compared to hardware

shared memory, our design provides developers with greater flexi-

bility in how writes from multiple workers are combined – whereas

hardware shared memory traditionally only provides last-writer-

wins semantics. Tasvir allows developers to implement a variety

of aggregation policies including ones which average writes from

different workers, add up writes from different workers, etc. Finally,

Tasvir enables ML researchers and developers to scale single ma-

chine algorithms (such as HogWild!) to multiple machines without

requiring significant algorithmic or development changes, thus sim-

plifying the development and deployment of new ML applications.

That is because our design maintains the same interface regardless

of whether workers are placed in the cores of the same machine or

distributed across machines.

We implemented Tasvir as a library and runtime daemon in

around 2500 lines of C. In the next section, we discuss how we

modified an existing stochastic gradient descent implementation to

work with Tasvir instead of native shared memory.

3 SGD EXAMPLE
To give a sense of changes required to adopt Tasvir, we briefly

discuss how we modified a shared-memory SGD implementation.

We also use this implementation to evaluate Tasvir’s overheadwhen

compared to a native hardware shared memory implementation.

While Tasvir provides a high-level interface compared to mes-

sage passing, its main programming interface (raw memory) is

not convenient for many applications. Therefore, we often need to

build distributed data structures on top that abstract away distri-

bution details from the application and embed the desired policies.

A distributed array data structure is a good fit for SGD. There are

different ways one could build such a data structure; we describe a

simple one that we built and experimented with below.

Allocation: Each thread requests creation of a Tasvir area with itself

as the owner. The master thread creates a master area in addition

to its worker area. Master thread updates the data structure with

the addresses of slave areas as they appear. Once the master thread

finishes initialization of the data structure, all threads proceed.

Versioning: Equivalent to a logical clock, a version number is main-

tained per worker in the data structure that reflects how shows

which stage of computation the worker is at. We use this version

number to implement barriers for synchronous SGD.

Barrier: The master busy-waits until all workers reach the current

version, and then progresses to the next version. Theworker threads

block until the master thread proceeds to the next version. This

barrier could be modified to implement bounded staleness [3, 5] by

letting workers proceed if they are apart at most by a given bound.

Map: Receives information about the batch to be processed next as

input and copies data from the master area to the worker area.

Reduce: Copies the updated data back to the master area. Policy for

update averaging could be implemented here if multiple threads

work on the same parameters.

Using this data structure, replacing a shared-memory SGD im-

plementation with a Tasvir-based one is straightforward. We chose

Cyclades [6] because its codebase is publicly available, implements

a wide range of models and updaters, and includes datasets for

evaluation and comparison. More importantly, it is a good baseline

to measure Tasvir’s overhead; Cyclades partitions datapoints such

that updates to the same parameter do not to overlap, which results

in a notable improvement over Hogwild!.

At a high-level, our modifications to Cyclades are as follows. We

replaced the model data with the above described array. At the start

of processing each batch, the Barriermethod followed by the Copy
method is invoked. At the end of processing each batch, the Reduce
method is called to copy the updated parameters back to the master.

We use another Tasvir array to distribute the computation of loss

function.

We expected Tasvir-based Cyclades to perform notably worse

than Cyclades because (a) we add a lot of local data movement,

and (b) Cyclades should already have minimal coherency traffic

(except false sharing). We experimented with a simple test: matrix

completion using sparse SGD on the Movie Lens 1M dataset with a

minibatch size of 2000 and learning rate of 0.02. We note that both

implementations are functionally identical and yield the same result

for synchronous SGD. Surprisingly, we observe that Tasvir-based

Cyclades performs very closely or in some cases significantly better

than the native shared-memory implementation (see Figure 1). This

is despite ~1000 synchronizations per second resulting in ~3.5GB/s

of data movement. Interestingly, with an increase in the number of

threads Cyclades runtime almost triples whereas Tasvir maintains

a similar runtime with higher thread count.

4 CONCLUDING REMARKS
While it has long been observed that shared memory can simplify

programming, this approach has so far not been adopted due to a

lack of hardware implementations and concerns that large-scale

software DSMsmight be inefficient. We have demonstrated through

evaluation on a simple prototype implementation that our software

DSM implementation imposes little overhead compared to a native

shared-memory implementation on a single machine. We plan to

evaluate performance at scale, and ultimately hope to provide an ef-

ficient yet simple to use, machine-learning-friendly shared memory

implementation.



Distributed Shared Memory for Machine Learning SysML, Feb 2018, Palo Alto, California

REFERENCES
[1] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado,

G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A.,

Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg,

J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens,

J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan,

V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., and

Zheng, X. TensorFlow: Large-scale machine learning on heterogeneous systems,

2015. Software available from tensorflow.org.

[2] Dahlgren, F., and Torrellas, J. Cache-only memory architectures. IEEE
Computer 32 (1999), 72–79.

[3] Ho, Q., Cipar, J., Cui, H., Lee, S., Kim, J. K., Gibbons, P. B., Gibson, G. A., Ganger,

G. R., and Xing, E. P. More effective distributed ml via a stale synchronous

parallel parameter server. Advances in neural information processing systems 2013
(2013), 1223–1231.

[4] Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R. B.,

Guadarrama, S., and Darrell, T. Caffe: Convolutional architecture for fast

feature embedding. In ACM Multimedia (2014).
[5] Li, M., Andersen, D. G., Park, J. W., Smola, A. J., Ahmed, A., Josifovski, V.,

Long, J., Shekita, E. J., and Su, B.-Y. Scaling distributed machine learning with

the parameter server. In OSDI (2014).
[6] Pan, X., Lam, M., Tu, S., Papailiopoulos, D. S., Zhang, C., Jordan, M. I., Ram-

chandran, K., Ré, C., and Recht, B. Cyclades: Conflict-free asynchronous

machine learning. CoRR abs/1605.09721 (2016).
[7] PyTorch. https://github.com/pytorch/pytorch, retrieved 01/05/2017.

[8] Recht, B., Ré, C., Wright, S. J., and Niu, F. Hogwild: A lock-free approach to

parallelizing stochastic gradient descent. In NIPS (2011).
[9] Sa, C. D., Zhang, C., Olukotun, K., and Ré, C. Taming the wild: A unified

analysis of hogwild!-style algorithms. Advances in neural information processing
systems 28 (2015), 2656–2664.

[10] Zhang, C., and Ré, C. Dimmwitted: A study of main-memory statistical analytics.

Proc. VLDB Endow. 7, 12 (Aug. 2014), 1283–1294.

https://github.com/pytorch/pytorch

	1 Introduction
	2 ML-friendly Shared Memory
	3 SGD Example
	4 Concluding Remarks
	References

