
Declarative Metadata Management:
A Missing Piece in End-To-End Machine Learning

Sebastian Schelter, Joos-Hendrik Böse, Johannes Kirschnick, Thoralf Klein, Stephan Seufert
Amazon

{sseb,jooshenb,kirschnj,thoralfk,seufert}@amazon.com

ABSTRACT
We argue for the necessity of managing the metadata and lineage of
common artifacts in machine learning (ML). We discuss a recently
presented lightweight system built for this task, which accelerates
users in their ML workflows, and provides a basis for comparability
and repeatability of ML experiments. This system tracks the lineage
of produced artifacts in ML workloads and automatically extracts
metadata such as hyperparameters of models, schemas of datasets
and layouts of deep neural networks. It provides a general declar-
ative representation of common ML artifacts, is integrated with
popular frameworks such as MXNet, SparkML and scikit-learn, and
meets the demands of various production use cases at Amazon.
ACM Reference Format:
Sebastian Schelter, Joos-Hendrik Böse, Johannes Kirschnick, Thoralf Klein,
Stephan Seufert. 2018. Declarative Metadata Management: A Missing Piece
in End-To-End Machine Learning. In Proceedings of SysML Conference, Stan-
ford, USA, Feb 2018 (SYSML’18), 3 pages.
https://doi.org/10.475/123_4

1 INTRODUCTION
When developing and productionizing ML models, a major propor-
tion of the time is spent on conducting model selection experiments
which consist of training and tuning models and their correspond-
ing features [2, 3, 13, 19, 22, 27]. Typically, data scientists conduct
this experimentation in an ad-hoc style without a standardized way
of storing and managing the resulting experimentation data and
artifacts. As a consequence, the results of these experiments are
often not comparable, as there is no standard way to determine
whether two models had been trained on the same input data, for
example. Even more, it is tedious and time-consuming to repeat
successful experiments later in time, and it is hard to get an overall
picture of the progress made in ML tasks towards a specific goal,
especially in larger teams. Simply storing the artifacts (datasets,
models, feature sets, predictions) produced during experimentation
in a central place is unfortunately insufficient to mitigate this situa-
tion. Achieving repeatability and comparability of ML experiments
forces one to understand the metadata and, most importantly, the
lineage of artifacts produced in ML workloads [13]. For example,
in order to re-use a persisted model, it is not sufficient to restore
its contents byte by byte; new input data must also be transformed

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SYSML’18, Feb 2018, Stanford, USA
© 2018 Copyright held by the owner/author(s).
ACM ISBN 123-4567-24-567/08/06. . . $15.00
https://doi.org/10.475/123_4

into a feature representation that the model can understand, so
information on these transforms must also be persisted. As another
example, in order to reliably compare two experiments, we must
ensure that they have been trained and evaluated using the same
training and test data respectively, and that their performance was
measured by the same metrics.

To address the aforementioned issues and assist data scientists in
their daily tasks, we proposed a lightweight system for handling the
metadata of ML experiments [20]. This system allows for managing
the metadata (e.g., Who created the model at what time? Which
hyperparameters were used? What feature transformations have been
applied?) and lineage (e.g., Which dataset was the model derived
from? Which dataset was used for computing the evaluation data?)
of produced artifacts, and provides an entry point for querying
the persisted metadata. Data scientists can leverage this service to
enable a variety of previously hard-to-achieve functionality, such
as regular automated comparisons of models in development to
older models (similar to regression tests for software). Additionally,
the proposed service helps data scientists to easily ad-hoc test their
models in development and provides a starting point for quantifying
the accuracy improvements that teams achieve over time towards
a specific ML goal, e.g., by storing and analyzing the evaluation
results of their models and showing them via a leaderboard. In order
to ease the adoption of our metadata tracking system, we explore
techniques to automatically extract experimentation metadata from
common abstractions used in ML pipelines, such as ‘data frames’
which hold denormalized relational data, and ML pipelines which
comprise a way to define complex feature transformation chains
composed of individual operators. For applications built on top
of these abstractions, metadata tracking should not require more
effort than exposing a few data structures to our tracking code.

In the following, we summarize the design decisions for our
system (Section 2), list related work (Section 3) and discuss future
research directions for ML metadata management (Section 4).

2 SYSTEM DESIGN
Data model. The major challenge in designing a data model for
experimentation metadata is the trade-off between generality and
interpretability of the schema. The most general solution would be
to simply store all data as bytes associated with arbitrary key-value
tags. Such metadata however would be very hard to automatically
interpret and analyze later, as no semantics are enforced. A too
narrow schema on the other hand might hinder adoption of our ser-
vice, as it does not allow scientists to incorporate experimentation
data from a variety of use cases. We propose a middle ground with
a schema1 that strictly enforces the storage of lineage information
(e.g., which dataset was used to train a model) and ML-specific
1available at https://github.com/awslabs/ml-experiments-schema

https://doi.org/10.475/123_4
https://doi.org/10.475/123_4
https://github.com/awslabs/ml-experiments-schema


SYSML’18, Feb 2018, Stanford, USA Sebastian Schelter, Joos-Hendrik Böse, Johannes Kirschnick, Thoralf Klein, Stephan Seufert

attributes (e.g., hyperparameters of a model), but still provides
flexibility to its users by supporting arbitrary application-specific
annotations. The most important principle we embrace is declara-
tivity: we store metadata of the artifacts but not code that produces
it, and only store pointers to the actual input data or serialized
parameters. This enforces a strict decoupling, and enables querying
and analysis of the metadata and lineage. The second important
principle for our system is immutability: metadata entries are only
written once, ruling out a variety of potential consistency problems.
Architecture. Our system employs a three-layered architecture:
On the lowest layer, a document database stores the actual exper-
imentation data. In the next layer, this centralized data store is
exposed to the outside world via a REST API, for which we provide
so-called low-level clients for the JVM and Python, which allow
users to explicitly store metadata for particular artifacts and query
the existing data. The uppermost layer is formed by what we call
high-level clients that are geared towards popular ML libraries such
as SparkML [14], scikit-learn [17], MXNet [4].
Automated Metadata Extraction. Our high-level clients enable
automated metadata extraction from internal data structures of
popular ML frameworks. ML workloads in SparkML for example
are comprised of pipeline stages which operate on DataFrames, a
relational abstraction for a partitioned table with a well-defined
schema. The architecture of SparkML pipelines allows us to auto-
matically track all the schema transformations (e.g, reading, adding
and removing columns) each pipeline operator conducts, as well
as the parameterization of the operators. We create and store di-
rected acyclic graph representations of Spark pipelines (where edges
denote pipeline operators and vertices correspond to dataframe
columns) by extracting the schema of the input data frame and re-
playing the schema changes the pipeline conducts. Frameworks for
deep neural networks offer their users a very fine-grained abstrac-
tion to declaratively define their models by combining mathemati-
cal operators (e.g., linear layers, convolutions, activation functions)
into the layout of the network to learn. Our high-level client for
MXNet [4] for example extracts and stores the resulting computa-
tional graph, together with the parameterization and dimensionality
of the contained operators, and corresponding hyperparameters
such as optimizer settings.

3 RELATEDWORK
In order to foster collaboration between scientists, platforms such
as OpenML [25] and the W3C ML Schema initiative [10] allow re-
searchers to share descriptions and evaluation results of their ML
experiments. Managing and efficiently executing model selection
workloads has been identified as an upcoming challenge [11, 13, 21]
in the data management community. The ModelDB [26] project
puts a specific focus on organizing models, and comes very close to
our system design-wise with the difference that we support more
general classes of models and apply more detailed tracking. Other
classes of systems specialize on deep learning [16], aim at efficiently
serving the resulting models for prediction [5, 6] or concentrate on
tracking and indexing provenance information [7, 15, 18]. Modeling
ML workloads via pipelines (which are typically inspired by the ‘es-
timator/transformer’ abstraction in scikit-learn [17]) and efficiently
executing such pipelines at scale has become an active area of

research. Established work describes production systems and plat-
forms [2, 3], investigates software engineering aspects [22, 24] and
pipeline abstractions for machine learning workloads [1], often on
top of the massively parallel dataflow system Apache Spark [14, 23].

4 OUTLOOK
We see a huge potential in enabling declarative management of
ML metadata: data scientists are provided with infrastructure that
allows them to accelerate their experimentation via dashboards and
leaderboards that list experiments, email notifications which sum-
marize experimentation progress, and automated regression tests
for the prediction quality of ML models during development, which
compare the results on hold out data with historical prediction
results, e.g. upon every commit to the codebase. In the remainder,
we elaborate on research directions and upcoming challenges for
ML metadata management systems:
ReplicableModel Training andDeployment. Systems like ours
allow companies to accelerate their experimentation and innovation
cycle, and have the potential to form a corner stone of replicable ML
model training, which will become more important in the light of
upcoming legal requirements for the real-world usage of machine
learning. In order to enable such a replicable model training, it is
not sufficient to be able to access the metadata of the ML workload,
additionally the training source code (e.g., via the corresponding git
commit) as well as the computational environment (e.g., via a docker
image) need be tracked and stored. Ideally such a system would
not only automate replicable model training but also integrate the
resulting models with model serving systems for easy deployment.
Further Automation of Metadata Tracking. Although we pro-
vide elaborate extraction functionality, we currently still rely on
users understanding our complex schema and correctly integrating
their code with our API. We aim to increase the automation of our
extraction code and to decrease the amount of additional code and
effort required to enable the metadata tracking in a workload. One
direction to investigate is the instrumentation of notebooks like
Jupyter [12], where we would ideally assist the user interactively in
tracking ML metadata during explorative model tuning efforts [18].
Another orthogonal direction would be to extract ML metadata
posthoc from logfiles produced by model training systems.
Meta Learning. Our long term research goals include enabling
meta learning [8] on top of our experiment repository, e.g. to rec-
ommend features, algorithms or hyperparameter settings for new
datasets. This would require us to implement the automated compu-
tation ofmetafeatures [9] for contained datasets, as well as similarity
queries allowing users to find the most similar datasets for new
data, based on these metafeatures. It would furthermore be bene-
ficial to additionally leverage data from open repositories such as
OpenML [25] for this task.

REFERENCES
[1] Pierre Andrews, Aditya Kalro, Hussein Mehanna, and Alexander Sidorov. 2016.

Productionizing Machine Learning Pipelines at Scale. Machine Learning Systems
workshop at ICML (2016).

[2] Denis Baylor, Eric Breck, Heng-Tze Cheng, Noah Fiedel, Chuan Yu Foo, Zakaria
Haque, Salem Haykal, Mustafa Ispir, Vihan Jain, Levent Koc, et al. 2017. TFX: A
TensorFlow-Based Production-Scale Machine Learning Platform. In KDD. 1387–
1395.

[3] Joos-Hendrik Böse, Valentin Flunkert, Jan Gasthaus, Tim Januschowski, Dustin
Lange, David Salinas, Sebastian Schelter, Matthias Seeger, and Yuyang Wang.



Declarative Metadata Management:
A Missing Piece in End-To-End Machine Learning SYSML’18, Feb 2018, Stanford, USA

2017. Probabilistic Demand Forecasting at Scale. PVLDB 10, 12 (2017), 1694–1705.
[4] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun

Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang. 2015. MXNet: A flexible
and efficient machine learning library for heterogeneous distributed systems.
Machine Learning Systems workshop at NIPS (2015).

[5] Daniel Crankshaw, Peter Bailis, Joseph E Gonzalez, Haoyuan Li, Zhao Zhang,
Michael J Franklin, Ali Ghodsi, and Michael I Jordan. 2015. The missing piece in
complex analytics: Low latency, scalable model management and serving with
velox. CIDR (2015).

[6] Daniel Crankshaw, XinWang, Guilio Zhou, Michael J Franklin, Joseph E Gonzalez,
and Ion Stoica. 2017. Clipper: A Low-Latency Online Prediction Serving System..
In NSDI. 613–627.

[7] Deepsense.ai. 2017. Neptune - Machine Learning Lab, https://neptune.ml/. (2017).
https://neptune.ml/

[8] Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Springenberg, Manuel
Blum, and Frank Hutter. 2015. Efficient and robust automated machine learning.
In NIPS. 2962–2970.

[9] Matthias Feurer, Jost Tobias Springenberg, and Frank Hutter. 2015. Initializing
Bayesian Hyperparameter Optimization via Meta-Learning.. InAAAI. 1128–1135.

[10] Machine Learning Schema Community Group. 2017. W3C Machine Learning
Schema. (2017). https://www.w3.org/community/ml-schema/

[11] Joseph M Hellerstein, Vikram Sreekanti, Joseph E Gonzalez, James Dalton,
Akon Dey, Sreyashi Nag, Krishna Ramachandran, Sudhanshu Arora, Arka Bhat-
tacharyya, Shirshanka Das, et al. 2017. Ground: A Data Context Service.. In
CIDR.

[12] Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian E Granger,
Matthias Bussonnier, Jonathan Frederic, Kyle Kelley, Jessica B Hamrick, Jason
Grout, Sylvain Corlay, et al. 2016. Jupyter Notebooks-a publishing format for
reproducible computational workflows.. In ELPUB. 87–90.

[13] Arun Kumar, Robert McCann, Jeffrey Naughton, and Jignesh M Patel. 2015.
Model Selection Management Systems: The Next Frontier of Advanced Analytics.
SIGMOD Record (2015).

[14] Xiangrui Meng, Joseph Bradley, Burak Yavuz, Evan Sparks, Shivaram Venkatara-
man, Davies Liu, Jeremy Freeman, DB Tsai, Manish Amde, Sean Owen, et al. 2016.
Mllib: Machine learning in apache spark. JMLR 17, 34 (2016), 1–7.

[15] Hui Miao, Ang Li, Larry S Davis, and Amol Deshpande. 2017. OnModel Discovery
For Hosted Data Science Projects. In Workshop on Data Management for End-to-
End Machine Learning at SIGMOD. 6.

[16] Hui Miao, Ang Li, Larry S Davis, and Amol Deshpande. 2017. Towards unified
data and lifecycle management for deep learning. In ICDE. 571–582.

[17] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss,
Vincent Dubourg, et al. 2011. Scikit-learn: Machine learning in Python. JMLR 12
(2011), 2825–2830.

[18] Joao Felipe Pimentel, Leonardo Murta, Vanessa Braganholo, and Juliana Freire.
2017. noWorkflow: a tool for collecting, analyzing, and managing provenance
from python scripts. VLDB 10, 12 (2017), 1841–1844.

[19] Neoklis Polyzotis, Sudip Roy, Steven EuijongWhang, and Martin Zinkevich. 2017.
Data Management Challenges in Production Machine Learning. In SIGMOD.
ACM, 1723–1726.

[20] Sebastian Schelter, Joos-Hendrik Boese, Johannes Kirschnick, Thoralf Klein, and
Stephan Seufert. 2017. Automatically Tracking Metadata and Provenance of
Machine Learning Experiments. Machine Learning Systems workshop at NIPS
(2017).

[21] Sebastian Schelter, Juan Soto, Volker Markl, Douglas Burdick, Berthold Reinwald,
and Alexandre Evfimievski. 2015. Efficient sample generation for scalable meta
learning. In ICDE. 1191–1202.

[22] D Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips, Diet-
mar Ebner, Vinay Chaudhary, Michael Young, Jean-François Crespo, and Dan
Dennison. 2015. Hidden technical debt in machine learning systems. In NIPS.
2503–2511.

[23] Evan R Sparks, Shivaram Venkataraman, Tomer Kaftan, Michael J Franklin,
and Benjamin Recht. 2017. KeystoneML: Optimizing Pipelines for Large-Scale
Advanced Analytics. ICDE (2017).

[24] Tom van der Weide, Dimitris Papadopoulos, Oleg Smirnov, Michal Zielinski, and
Tim van Kasteren. 2017. Versioning for End-to-End Machine Learning Pipelines.
In Workshop on Data Management for End-to-End Machine Learning at SIGMOD.
2.

[25] Joaquin Vanschoren, Jan N Van Rijn, Bernd Bischl, and Luis Torgo. 2014. OpenML:
networked science in machine learning. SIGKDD 15, 2 (2014), 49–60.

[26] Manasi Vartak, Harihar Subramanyam, Wei-En Lee, Srinidhi Viswanathan,
Saadiyah Husnoo, Samuel Madden, and Matei Zaharia. 2016. ModelDB: A System
for Machine Learning Model Management. InWorkshop on Human-In-the-Loop
Data Analytics at SIGMOD. 14:1–14:3.

[27] Martin Zinkevich. 2017. Rules of Machine Learning: Best Practices for ML
Engineering. (2017). http://martin.zinkevich.org/rules_of_ml/rules_of_ml.pdf

https://neptune.ml/
https://www.w3.org/community/ml-schema/
http://martin.zinkevich.org/rules_of_ml/rules_of_ml.pdf

	Abstract
	1 Introduction
	2 System Design
	3 Related Work
	4 Outlook
	References

