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1 INTRODUCTION
STRADS-Automatic Parallelization(AP) is a distributed framework
that automatically parallelizes sequential machine learning (ML)
programs to execute in a cluster. STRADS-AP offers a set of memory
container data structures with fine-grained read/write access and
two parallel loop operators that schedule parallel loop bodies with
strong[10, 14, 17, 19, 22] or relaxed[6, 12, 18, 24] consistency. The
STRADS-AP APIs allow ML programmers to write sequential code
for a ML algorithm and easily achieve good parallel performance.

The STRADS-AP runtime is responsible for partitioning input
data and model parameters, parallelizing slices of ML computations
across a cluster, and enforcing strong consistency on shared data
or synchronizing partial outputs with relaxed consistency. The
STRADS-AP runtime frees ML programmers from low-level details
of distributed ML programming: 1) concurrency control for shared
data if any exists; and 2) synchronization of partial model parameter
updates across a cluster.

STRADS-AP is implemented as a C++ template library. In this
extended abstract, we present our programming model applied
to two well-known ML applications, word2vec[11, 13, 20, 21] and
stochastic gradient descent matrix factorization(SGDMF)[15].
2 PROGRAMMING MODEL
STRADS-AP offers a set of distributed data structures (DDSs) includ-
ing dvector, dmap, and dmultimap. For data loading and parameter
initialization, STRADS-AP provides data processing operators such
as map, reduce, transform, join, create, and store that operate on
DDSs. ML programmers declare DDSs for storing large input data
and parameters and process them using these data processing oper-
ators. For ML training, STRADS-AP offers loop operators that take a
user-defined function that specifies ML optimization computations
as a loop body. This user-defined function is allowed to read/write
individual DDS elements. ML programmers write visually simple,
straightline code as a driver program using these APIs. STRADS-AP
offers two parallel-for operators that support two popular parallel
ML execution models, asynchronous and synchronous models.

Async_Parallel_For: takes three arguments: the start index S ,
the end index S+N , and the C++ lambda function [captures]F (const
int index){ code for lambda function body}. The for-loop function
executes N +1 lambda function instances, F (S ), F (S+1), .., F (S+N )
concurrently. For simplicity’s sake, we let Fi denote F (i ). Program-
mers are allowed to capture arbitrary variables in the current
scope in the capture list[] of F and specify a parameter update
routine as the function body of F . The one constraint in captur-
ing variables is that only DDS type variables can be captured by
reference; that is, non-DDS type variables must be captured by
copy. At runtime, STRADS-AP partitions the index range(S, S +
1, .., S +N ) into P non-overlapping chunksCp , and schedules up to
P workers to concurrently execute F with different index chunks.
A workerWk sequentially runs |Ck | lambda function instances,

Fi with i ∈ Ck allowing(and scheduling) reads/writes to global
DDS elements(DDS typed variables). If the lambda function body
modifies a DDS type variable captured by reference, read/write or
write/write data conflicts might happen. The STRADS-AP runtime
avoids data conflicts using dependency-aware scheduling and im-
proves statistical efficiency. This dependency-aware scheduling is
effective for data conflict-sensitive algorithms(i.e. coordinate de-
scent lasso[14, 17, 25]) where data conflict-allowing codes might
sacrifice more statistical progress than is needed for the through-
put increase achieved. Therefore, STRADS-AP emphasizes good
statistical progress wherever possible. For demonstration purposes,
consider SGDMF[15]. The core computation routine of SGDMF can
be expressed in about 50 lines in STRADS-AP . The following shows
the main part of STRADS-AP SGDMF.

typedef rate T1; // struct rate {int i, int u, float r}
typedef array<float, K> T2;
dvector<T1> &R=CreateVector<T1>(path,parser);//DDS for input data
dvector<T2> &P=CreateVector<T2>(maxi, initf);//DDS for parameters
dvector<T2> &Q=CreateVector<T2>(maxu, initf);//DDS for parameters
float alpha(.01f), lambda(.1f);
for(auto i(0);i<maxiter;i++){

Async_Parallel_For(0,R.size()-1,[alpha,&R,&P,&Q](int i){
rate &r=R[i];
T2 er = r - P[r.u]*Q[r.i];
Q[r.i]+= alpha*(er*P[r.u]-lambda*Q[r.i];
P[r.u]+= alpha*(er*Q[r.i]-lambda*P[r.u];});

}

Note that the STRADS-AP runtime is responsible for addressing
data conflict problems on Q and P so programmers can focus on
writing ML computation routines without implementing code to
resolve and avoid data conflict problems.

Sync_Parallel_For: takes four arguments: input data of DDS<T>
type, size of mini-batch M , a lambda function [captures]F(const
vector<T> &minibatch){lambda function body}, and a synchroniza-
tion option. The STRADS-AP runtime partitions input data into L
mini-batches where L is approximately (input_data_size )/M and
then schedules multiple workers to process different batches con-
currently. A worker starts the lambda function F (minibatchi ) with
a local copy of captured variables and allows read/write only to the
local copy while running F . For simplicity’s sake, we let Fi denote
F (minibatchi ). At the end of a minibatch, a separate per-worker
thread synchronizes the local copy of only those DDSs captured by
reference according to the sync option. For demonstration purposes,
consider the core of word2vec based on Google’s open source[5]:

typedef vector<word> T1; typedef vector<array<float, vec_size>> T2;
dvector<T1> &inputD=CreaetVector<T1>(path,parser);// DDS for input
dvector<T2> &Syn0=CreateVector<T2>(vocsize, initrow1);// DDS
dvector<T2> &Syn1=CreateVector<T2>(vocsize, initrow1);// DDS
float alpha(.01f); binary_tree &bintree=CreateBinaryTree();
expTable &eb=MakeExpTable();//precompute the exp() table
for(auto i(0);i<maxiter;i++){
Sync_Parallel_For(inputD,minibatchsize,

[alpha, eb, bintree,&Syn0,&Syn1](const vector<T1> &m){
for(auto &sentence: m){
//for each window in setence, pick up N words
// select N negative sample words based on bintree
// r/w to N rows of Syn0 and Syn1 vector tables

}



},FLAGS_SyncOption); // specifies synchronization scheme
} // end of for(auto i(0);i<maxiter..)

STRADS-AP allows programmers to select a synchronization
scheme: BSP[27], SSP[6, 12, 18], or HybridSync1. This allows pro-
grammers to focus on writing ML computations without imple-
menting network communication or parameter synchronization.

3 IMPLEMENTATION
The STRADS-AP runtime consists of a master driver process, mul-
tiple worker processes, and DDS server processes. An application
is written as a driver program which runs on the master only. In a
driver program, programmers create DDSs using the create opera-
tor, and the DDSs are automatically partitioned over DDS servers.
DDS servers provide a global address abstraction to master and
workers. On invocation of a parallel operator, the master schedules
the workload of the operator and transparently makes RPC calls to
workers passing serialized arguments2.

Parallel-For operators extend the virtual iteration(VI) technique[7]
previously used for prefetching. STRADS-AP uses VI for analyz-
ing data dependency among lambda function instances, Fi with
i = S, S + 1, .., S + N , for Async_Parallel_For as well as prefetch-
ing for Sync_Parallel_For. To achieve an efficient implementation
of VI, STRADS-AP assumes that targeted ML applications satisfy
three properties: 1) parallel-for operators are repeated many times
before convergence; 2) accessed memory addresses of Fi do not
change over different iterations; and 3) any serial reordering of Fi
executions is acceptable. All three are routinely acceptable in ML.

The STRADS-AP runtime keeps track of the invocation count of
each parallel-for operator. On the first invocation of a parallel-for
operator, STRADS-AP runs the operator without committing writes
and gathers read/write addresses on data structures of DDS type
for each Fi . Sync_Parallel_For uses this read/write address informa-
tion for prefetching. For Async_Parallel_For operator, STRADS-AP
builds a dependency graph based on this address information and
makes parallel execution plans that do not cause conflicts. To find
enough parallelism, STRADS-AP might change execution ordering
of FS ,FS+1...,FS+N . Thus, the output of Async_Parallel_For might
be different from that of sequential execution, but STRADS-AP en-
sures serializability[3] of loop bodies. For each Async_Parallel_For
in a driver program, STRADS-AP runs VI and scheduling once and
reuses execution plans over subsequent iterations. Thus, the over-
head of VI and scheduling is amortized over multiple iterations.
4 PERFORMANCE & PRODUCTIVITY
In our performance evaluations shown in Table 1 and 2, we used
up to 16 machines where each machine has 16 cores. First, we
compared STRADS-AP SGDMF and word2vec with single machine
baseline codes and MPI-based distributed codes. For a fair compari-
son, we implemented the same algorithm 3 as did our competitors.
In Table 1, compared with single machine baselines, STRADS-AP
256 core codes converged 38.7 and 51 times faster for SGDMF and

1This scheme runs lock-free asynchronous execution[24] among multi-threads within
a machine, but enforces synchronization across a cluster at the end of a minibatch.
2C++ does not have strong reflection capability like Java/Python. To fill this void,
STRADS-AP implements a standalone tool that analyzes user source code using LLVM
[16] Clang ASTMatcher, identifies all type information of parallel operators’ arguments,
and generates RPC stub codes and a named function class for each lambda function
argument of a parallel operator. This code synthesizing tool saves ML programmers
significant time and effort needed for writing application-specific RPC codes.
3For word2vec, we conducted evaluations with Skip-gram with Hierarchial Softmax
in [5] and did not include CBOW routines in line counts for both STRADS-AP and
SingleThread. For word2vec SingleThread/OpenMP, we modified google word2vec to
load all input data into main memory so that no disk access occurs in training time.

SGDMF cores Netflix[2]
MPI 256 254s

STRADS-AP 256 325s
SingleThread 1 12600s
OpenMP 16 1498s

Word2Vec cores 1Billon[4]
MPI 256 1141s

STRADS-AP 256 1331s
SingleThread 1 67754s
OpenMP 16 11772s

Table 1: Left table reports elapsed times in seconds for 60 iterations
for MFwith rank=1K. Right table reports the times for 10 iterations
for word2vec with 1 billion data[4] with vector size=100,window=5.

#nodes Similarity Analogy
STRADS MPI STRADS MPI

SingleThrd 0.564 0.403
128 0.565 0.561 0.411 0.411
256 0.555 0.552 0.400 0.397

Implementaton lines
W2V SingleThrd 572
W2V STRADS-AP 591
MF SingleThrd 271
MF STRADS-AP 279

Table 2: Left table reports test accuracy for 1 billion data set.
We used WordSimilarity-353 test set[8], and Google’s analogy test
set[21]. Right table reports line counts of W2V and MF codes.

word2vec, respectively. However, the 256 core STRADS-AP SGDMF
converged 27% slower than the hand optimized MPI version. We
attributed this difference to the overhead of VI+Scheduling (17%)
and automated data serialization (10%). STRADS-AP word2vec con-
verged 16 percent slower than hand optimized MPI code on 256
cores. The memory copy optimization available in MPI and the data
serialization overhead of STRADS-AP account for this performance
gap. Second, we compared the test accuracy of word2vec. The left
side in Table 2 shows that STRADS-AP word2vec on 128, 256 core
configurations achieved comparable accuracy with the ideal accu-
racy of SingleThread. STRADS-AP and SingleThread SGDMF both
converged to a similar objective value after running 60 iterations,
which means STRADS-AP SGDMF achieved the ideal statistical
efficiency of SingleThread thanks to STRADS-AP scheduling.

To explore programming productivity with STRADS-AP , we ran
two experiments. First, we compared line counts of whole applica-
tion programs including I/O and computation routines. The right
side in Table 2 shows that the line counts of STRADS-AP applica-
tions are comparable to those of SingleThread baselines. Second, we
conducted a preliminary user study. We ran a capstone project with
a master student in CMU’s Master of Computational Data Science
program[26]. The student had C++ programming experince and had
finished an introductory graduate ML course. The student imple-
mented distributed implementations of word2vec with STRADS-AP
and MPI[9] based on Mikolov’s papers[20, 21] and Google open
source[5]. It took 2 hours to implement the STRADS-AP code start-
ing with Google’s open source code. It took 2 days to achieve a
working implementation of MPI-based code, but the initial MPI-
based code suffered low test accuracy and computation throughput.
The student was able to match the STRADS-AP code in terms of
test accuracy and throughput after two weeks of performance opti-
mizations. We believe this is a complelling example of the potential
value of STRADS-AP for ML-savvy developers interested more in
statistical code than in distributed system code.

Recently, high-level frameworks, such as TensorFlow[1] and
PyTorch[23], have significantly simplified deep learning program-
ming using symbolic differentiation and automatic gradient compu-
tation and update. Compared with frameworks like these, STRADS-
AP offers a lower level programming abstraction and requires ML
developers to write the optimization code. However, STRADS-AP
enables relatively simple programming for ML developers who
want to develop non-gradient algorithms, to explore ML models
with non-differentiable loss functions, and to parallelize dependent
computations without relaxing serializability; that is, STRADS-AP
enables strong support for ML programs like these that cannot be
efficiently supported by such high-level frameworks.
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