
A Deeper Look at FFT and Winograd Convolutions
Aleksandar Zlateski∗† Zhen Jia∗‡ Kai Li‡ Fredo Durand†
†Massachusetts Institute of Technology ‡Princeton University

∗Equally contributed

Motivation and Previous Work

Since convolutional layers are computationally expensive and
dominate the total execution time of modern deep ConvNets
[13, 16, 18, 19], many efforts have been made to improve the
performance of the convolutional primitives for CPUs [1, 7, 20,
25, 27], GPUs [4, 8, 15, 21] or both [26]. Initially, several ap-
proaches using FFT–based convolutions were proposed [15, 21,
25, 26]. Recent work by Lavin et al. on Winograd–based con-
volutions [14] demonstrated a great speedup, which shifted the
focus from FFT–based to Winograd–based implementations, as
it became widely accepted that the Winograd–based approach
provides greater reduction in the number of operations required
by the algorithm, especially for small kernels (e.g. 3 × 3). A
well optimized manycore CPU implementation [3, 12] of the
Winograd approach can improve the performances by more
than 3X.

The main reduction in operations in the Winograd method,
compared to FFT, comes from the fact that it works with real
numbers. However, due to its numerical instability, the Wino-
grad method can only use small tile (transform) sizes [7, 14, 22],
which result in a larger amount of required data movement to
and from memory. In contrast, the FFT–based method does not
suffer from such instability, thus larger tile sizes can be used,
which can partially reduce the number of required operations
and greatly reduce the amount of data movements; these sav-
ings can, in certain cases, offset the increase in the number of
operations due to complex arithmetic.

These observations raise the question, under what conditions
the Winograd-based approach performs better than the FFT–
based approach and vice versa, and how to compare the two
approaches.

Our Contributions and Novelty

In this paper, we propose a performance model based on the
idea of Roofline [23] that, in addition to the number of op-
erations, accounts for the total amount of data movement (to
and from memory), as well as the arithmetic intensity (oper-
ations per moved byte) to compare the Winograd-based and
FFT-based approach. To estimate the run times, alongside the
processor’s speed, our model also considers memory band-
width and the cache sizes. We have also compared optimized
implementations of both approaches on the same hardware.

Our model is suitable for modern processors, both CPUs and
GPUs, which tend to have large compute–to–memory ratios, the
ratio between the speed (in FLOPS) and memory bandwidth.
Both compute speed and memory bandwidth are improving
exponentially. However, the exponent for speed is substantially
larger than that for memory bandwidth [24], which results in
an increasing compute–to–memory ratio. For instance, the 4.5
TFLOPS Intel Knights Landing processor [11] has a compute–
to–memory ratio of 11, and the latest Skylake Xeon processor

family has ratios in the range of 20 to 30. Titan Xp GPU from
NVIDIA has a ratio of 20, and Tesla V100 has a ratio of 16
for single precision computation, and a ratio of 133 for half–
precision computation using its dedicated tensor cores.

Our model suggests that whether the Winograd or FFT ap-
proach is faster depends on both the layer and hardware it is
executed on. However, on average, the FFT–based approach
outperforms the Winograd–based ones on most commonly used
networks, with the margin increasing as the system’s compute–
to–memory ratio increases.

Through a set of empirical experiments, we confirm the
predictions of our model on modern CPUs.

Performance Model

The Roofline model [23] estimates an application’s upper bound
performance as a function of its arithmetic intensity, derived
by dividing the number of floating point operations by the total
data movement. The runtime (T) is estimated by:

T =
FPO

min(Peak FLOPS, AI × MB)
(1)

Where MB indicates the memory bandwidth; AI the arithmetic
intensity and FPO is short for the total number of required float-
ing point operations. In our model, data movement is defined
as movement between main memory and any of the caches. We
focus on 32-bit floating point arithmetic, similar analysis can
be performed for 16-bit half-precision floats.

Both FFT–based and Winograd–based approaches perform
a change of basis of the inputs and kernels, in which convolu-
tion becomes a multiplication. Both approaches contain four
stages [12, 14, 15, 21]: 1○ transforming input images, 2○ trans-
forming kernels, 3○ performing element–wise products of the
transformed images and kernels, which is an equivalent prob-
lem to a matrix multiplication (with real matrices for Winograd,
and complex matrices for FFT), and 4○ transforming the results
of 3○ back to the spatial domain.

The time required for each stage can be estimated using
Eqn. 1. The transform stages (1○, 2○, 4○) have very low arith-
metic intensity – lower than 2.5 for Winograd and lower than
3.5 for FFT, and will thus be memory bound on all modern
systems. In this case Eqn. 1 can be reduced to T = DM

MB , where
DM represents data movement in bytes.

The element–wise product stage will generally have a larger
AI , which will depend on the number of layer’s input and output
channels and the amount of available cache. However, the FFT–
based approach will typically have the AI twice as large as its
Winograd counterpart, due to working in the complex domain.
In some cases, on machines with large compute–to–memory
ratios, the Winograd method will be memory bound, while the
FFT method is compute bound.

Relative Performances We are interested in the relative
performances of the two approaches. We define the speedup

0.5

1.0

1.5

0 20 40 60

VGG 1.2

0.4

0.8

1.2

1.6

0 20 40 60

VGG 2.1

0.4

0.8

1.2

1.6

0 20 40 60

VGG 2.2

0.50

0.75

1.00

1.25

1.50

0 20 40 60

VGG 3.1

0.50

0.75

1.00

1.25

1.50

0 20 40 60

VGG 3.2

0.50

0.75

1.00

1.25

1.50

0 20 40 60

VGG 4.1

0.50

0.75

1.00

1.25

1.50

0 20 40 60

VGG 4.2

0.50

0.75

1.00

1.25

1.50

0 20 40 60

VGG 5.1/5.2

System's Compute−to−memory Ratio

F
F

T
 S

pe
ed

up

Empirical Theoretical L2 Cache size ● ● ●256 kb 512 kb 1024 kb

Figure 1: Estimated and empirically obtained speedup of FFT–based convolutions
versus Winograd–based ones on CPUs with various compute–to–memory ratios and
cache sizes.

20
3.

75
33

4.
18

18
4.

3411
6.

65
17

3.
13

0

100

200

300

VGG 1.2

91
.4

7
11

7.
13

80
.9

3
51

.2
3

67
.9

6

0

25

50

75

100

125
VGG 2.1

18
3.

43
21

9.
23

13
1.

4181
.7

5
94

.9
0

0

50

100

150

200

VGG 2.2

88
.6

5
78

.6
6

57
.5

539
.0

8
40

.1
7

0

25

50

75

VGG 3.1

17
7.

59
14

5.
90

11
1.

0468
.4

6
65

.2
4

0

50

100

150

VGG 3.2

86
.5

0
10

0.
14

41
.9

5
37

.8
2

30
.5

8

0

25

50

75

100

VGG 4.1

16
4.

09
13

4.
87

76
.1

7
71

.5
0

58
.3

5

0

50

100

150

VGG 4.2

42
.5

766
.6

4
24

.5
4

22
.1

9
20

.5
0

0

20

40

60

VGG 5.1/5.2

Our Winograd Our FFT MKL−DNN Winograd LIBXSMM Winograd MKL−DNN Direct

T
im

e
(m

ill
is

ec
on

ds
)

Figure 2: Absolute performances of our Winograd–
and FFT– based implementations compared to the
latest version of MKL-DNN and LIBXSMM.

α =
∑
S TWs /

∑
S T F

s to be the ratio of the time required for pro-
cessing a layer using the Winograd approach and the time
required using the FFT approach, each of which is estimated to
be equal to the sum of times required for all four stages. When
α is greater than one, the FFT method is expected to run faster.

The speed of both methods will depend on the tile sizes used.
For Winograd, due to its numerical instability, we allow tile
sizes up to 6×6, as larger tile sizes can increase numerical errors
by two or more orders of magnitude, when compared to direct
convolution [12, 14], resulting in an unstable computation. This
limit is also enforced by the implementations, such as MKL-
DNN [2], LIBXSMM [5, 10], and cuDNN [8]. For the FFT
method we allow for an arbitrary tile size, however, using
tiles larger than 642 is never optimal. Using the methodology
from [14], we estimate that the FFT method has lower error
than direct convolution for all tile sizes up to 642.

Implementation and Empirical Results

To empirically confirm the estimates of our model on modern
systems, we used the fastest available implementation of the
Winograd–based approach [3, 12] which uses “wincnn” [6] to
generate transform codelets and just–in–time (JIT) compiled
primitives for fast matrix multiplication on AVX512 capable
machines. We extended the implementation to support AVX2,
and implemented an FFT–based approach by replacing the
“wincnn” primitives, with ones generated by “genfft” from the
fftw package [9], as well as implemented JIT primitives for
complex matrix multiplication.

In Fig. 1 we show the empirically measured values for the
speedup of the FFT–based approach over the Winograd–based
one, together with the theoretical estimates of our model for
forward propagation of the layers of VGG [18] network. The
color represents the amount of L2 cache available (note that the
lines sometimes overlap). A total of 7 system configurations
were used, two of which were AVX2–based and four AVX512.
The slowest CPU was capable of approximately 1 TFLOPS (In-
tel i7-6950X desktop CPU), while the fastest one was capable
of 4.5 TFLOPS (Intel Xeon Phi 7210). The oldest generation of
CPUs was Intel E7-8890v3 with 1.44 TFLOPS and only 256KB
of L2 cache, whereas the other CPUs had either 512 or 1024 KB
of cache per core. The position on the x axis was determined
by dividing processors’ speed (in FLOPS), by theoretically
achievable memory bandwidth.

As our model suggests, and our empirical results confirm, for
some of the layers of VGG, the FFT approach is faster and for
some the Winograd one is faster. The model was also confirmed
on AlexNet [13] and OverFeat [17] layers (not presented) where
FFT was an optimal choice for all layers.

For credibility, we compare absolute performances of our im-
plementations against two state–of–the–art implementations of
Winograd–based convolutions (latest MKL-DNN and LIBXSMM,
as January 2018) and the fastest implementation of direct based
convolution (MKL-DNN). Fig. 2 shows the performances of
our two implementations against other implementations on a
2 TFLOPS Intel i9-7900X processors based system (compute–
to–memory ratio of 22). Our Winograd implementation outper-
formed on 5 out of 7 CPUs that supported AVX512 (MKL-DNN
and LIBXSMM do not provide an AVX2 implementation). The
relative performances of our FFT implementation was consis-
tent with our model.

Conclusion and Discussion

While on popular neural networks, the FFT approach outper-
forms on average. The choice of the algorithm should, perhaps,
be decided on a per layer basis.

Generally, the relative performance of FFT over Winograd
increases in the following scenarios: (1) as the compute–to–
memory ratio increases, (2) when the cache size is limited,
(3) when the image sizes are large, (4) when the number of
input/output channels is relatively small.

Another important finding is that no specific sizes of FFT are
required, in contrast to the popular belief that power–of–two
sizes should be used. The arithmetic intensity of FFT trans-
forms are much lower than the compute–to–memory ratios of
modern processors, even for large prime numbers, and are thus
memory bound. Using non–typical FFT sizes, such as large
prime numbers can, in certain cases, greatly improve the per-
formances, as it can minimize the amount of required padding,
and thus unnecessary computation, when dividing images into
tiles.

Another FFT–based approach, using Gauss’ complex num-
ber multiplication, as proposed in [14], was analyzed, imple-
mented and empirically confirmed. This approach reduced the
amount of operations with the expense of more data movement,
and for certain layers and on certain systems it can outperform
both the Winograd and regular FFT–based approach.

2

References

[1] 2016. FALCON Library: Fast Image Convolution in Neural Networks on
Intel Architecture. "https://colfaxresearch.com/falcon-library/". (2016).

[2] 2016. Intel(R) Math Kernel Library for Deep Neural Networks. "https:
//github.com/01org/mkl-dnn". (2016).

[3] 2018. N-Dimensional Winograd–based convolution framework.
https://bitbucket.org/poozh/ond-winograd. (2018).

[4] Accessed: 2018-01-01. Intel® Nervana reference deep learning framework.
https://github.com/NervanaSystems/neon. (Accessed: 2018-01-01).

[5] Accessed: 2018-01-01. LIBXSMM. https://github.com/hfp/libxsmm. (Ac-
cessed: 2018-01-01).

[6] Accessed: 2018-01-01. Wincnn. "https://github.com/andravin/wincnn".
(Accessed: 2018-01-01).

[7] David Budden, Alexander Matveev, Shibani Santurkar, Shraman Ray
Chaudhuri, and Nir Shavit. 2016. Deep Tensor Convolution on Multicores.
arXiv preprint arXiv:1611.06565 (2016).

[8] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen,
John Tran, Bryan Catanzaro, and Evan Shelhamer. 2014. cudnn: Efficient
primitives for deep learning. arXiv preprint arXiv:1410.0759 (2014).

[9] Matteo Frigo and Steven G Johnson. 1998. FFTW: An adaptive software
architecture for the FFT. In Acoustics, Speech and Signal Processing, 1998.
Proceedings of the 1998 IEEE International Conference on, Vol. 3. IEEE,
1381–1384.

[10] Alexander Heinecke, Greg Henry, Maxwell Hutchinson, and Hans Pabst.
2016. LIBXSMM: accelerating small matrix multiplications by runtime
code generation. In High Performance Computing, Networking, Storage
and Analysis, SC16: International Conference for. IEEE, 981–991.

[11] James Jeffers, James Reinders, and Avinash Sodani. 2016. Intel Xeon
Phi Processor High Performance Programming: Knights Landing Edition.
Morgan Kaufmann.

[12] Zhen Jia, Aleksandar Zlateski, Kai Li, and Fredo Durand. 2018. Optimizing
N-Dimensional, Winograd-Based Convolution for Manycore CPUs. In
Proceedings of the 23rd ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming.

[13] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet
classification with deep convolutional neural networks. In Advances in
neural information processing systems. 1097–1105.

[14] Andrew Lavin and Scott Gray. 2016. Fast algorithms for convolutional
neural networks. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 4013–4021.

[15] Michael Mathieu, Mikael Henaff, and Yann LeCun. 2013. Fast training
of convolutional networks through ffts. arXiv preprint arXiv:1312.5851
(2013).

[16] Guido F Montufar, Razvan Pascanu, Kyunghyun Cho, and Yoshua Bengio.
2014. On the number of linear regions of deep neural networks. In Advances
in neural information processing systems. 2924–2932.

[17] Pierre Sermanet, David Eigen, Xiang Zhang, Michaël Mathieu, Rob Fergus,
and Yann LeCun. 2013. Overfeat: Integrated recognition, localization and
detection using convolutional networks. arXiv preprint arXiv:1312.6229
(2013).

[18] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional
networks for large-scale image recognition. arXiv preprint arXiv:1409.1556
(2014).

[19] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew
Rabinovich. 2015. Going deeper with convolutions. In Proceedings of the
IEEE conference on computer vision and pattern recognition. 1–9.

[20] Vincent Vanhoucke, Andrew Senior, and Mark Z Mao. 2011. Improv-
ing the speed of neural networks on CPUs. In Proc. Deep Learning and
Unsupervised Feature Learning NIPS Workshop, Vol. 1. 4.

[21] Nicolas Vasilache, Jeff Johnson, Michael Mathieu, Soumith Chintala,
Serkan Piantino, and Yann LeCun. 2014. Fast convolutional nets with
fbfft: A GPU performance evaluation. arXiv preprint arXiv:1412.7580
(2014).

[22] Kevin Vincent, Kevin Stephano, Michael Frumkin, Boris Ginsburg, and
Julien Demouth. 2017. On Improving the Numerical Stability of Winograd
Convolutions. (2017).

[23] Samuel Williams, David Patterson, Leonid Oliker, John Shalf, and Kather-
ine Yelick. 2008. The roofline model: A pedagogical tool for auto-tuning
kernels on multicore architectures. In Hot Chips, Vol. 20. 24–26.

[24] Wm A Wulf and Sally A McKee. 1995. Hitting the memory wall: impli-
cations of the obvious. ACM SIGARCH computer architecture news 23, 1
(1995), 20–24.

[25] Aleksandar Zlateski, Kisuk Lee, and H Sebastian Seung. 2016. ZNN–A Fast
and Scalable Algorithm for Training 3D Convolutional Networks on Multi-
core and Many-Core Shared Memory Machines. In Parallel and Distributed
Processing Symposium, 2016 IEEE International. IEEE, 801–811.

[26] Aleksandar Zlateski, Kisuk Lee, and H Sebastian Seung. 2016. ZNNi:
maximizing the inference throughput of 3D convolutional networks on
CPUs and GPUs. In High Performance Computing, Networking, Storage
and Analysis, SC16: International Conference for. IEEE, 854–865.

[27] Aleksandar Zlateski and H Sebastian Seung. 2017. Compile-time optimized
and statically scheduled ND convnet primitives for multi-core and many-
core (Xeon Phi) CPUs. In Proceedings of the International Conference on
Supercomputing. ACM, 8.

Acknowledgments
We thank Sebastian Seung for helpful discussions, and Nir
Shavit for providing an access to a Skylake Xeon Gold Server.
We are grateful to Toyota Research Institute for supporting
the Toyota - CSAIL Joint Research Center at MIT, and Intel
Corporation for supporting the Intel Parallel Computing Center
at Princeton University. Zhen Jia was partially supported by
IARPA (D16PC00005).

3

 "https://colfaxresearch.com/falcon-library/"
"https://github.com/01org/mkl-dnn"
"https://github.com/01org/mkl-dnn"
https://github.com/NervanaSystems/neon
https://github.com/hfp/libxsmm
"https://github.com/andravin/wincnn"

	References

