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1 Introduction and Motivation

As the industry finds more uses for deep learning algorithms in
consumer-facing devices, it is becoming clear that running such
expensive algorithms on what are usually portable, low-power de-
vices is often infeasible due to the significant storage, performance,
and energy limitations involved. This issue has motivated much
recent research into machine learning compression methods.

Existing compression methods, however, either struggle to com-
press models to sizes significantly less than % their original size [6,
7], introduce significant storage or computational overhead [3, 6,
8, 15], produce unpredictable compression rates [8], or require
significant engineering to implement and tune important hyperpa-
rameters [5, 12].

Our work builds on existing research in the area of low rank
factorization [4, 10, 11, 14]. We develop a new compression method
and library, DeepThin, that:

1. Solves the fundamental scaled-symmetry issue with extremely
low-rank matrix factorization of deep learning model param-
eters

2. Is integrated (along with previous-work techniques for com-
parison) with the TensorFlow framework

3. Consistently results in up to 60% better accuracy than previ-
ous methods

4. Empirically demonstrates inference speed-ups from 2X to
14X

2 DeepThin Architecture

Rank factorization compression algorithms approximate a given
weight matrix, Woxg, with the matrix product of two smaller ma-
trices [4, 10, 11, 14].

Rank-1 factorization of a weight matrix is extremely appealing
from both a storage and computational efficiency standpoint, but,
as the rank decreases, rows/columns of the reconstructed weight
matrix begin to resemble each other - a limitation we have found
to significantly impact the learning capacity and accuracy of a
network.

To prevent this, DeepThin first applies rank approximation to
an auxiliary matrix, Wy, of (semi-arbitrary) size m X n:

Waux = Xf-wf (1)

where now X! is a m X r matrix and W¥ is an r x n matrix.

Finally, rows of Wy are “spread” along columns of Woxr, as
demonstrated in Figure 1, such that the artificial symmetry is bro-
ken.

Nevertheless, the above reshape function may still result in pat-
terns in Woxg, in the form of blocks (of columns) scaled slightly
differently. To mitigate this, our library picks an n dimension that
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is prime relative to R. Our library computes and handles all other
constraints necessary to achieve a given compression rate.

The X! and Wf factors can then be backpropagated to and com-
pletely learned during training.

3 DeepThin Library Implementation

We implement both DeepThin and previously proposed compres-
sion methods as part of a library module integrated with the open-
source TensorFlow [1] framework.

Instead of calling the standard TensorFlow methods to declare a
learnable variable, the user calls our library, which creates a separate
sub-graph to generate each variable and returns a “tensor” that can
be used as a regular variable in TensorFlow. The contents of each
sub-graph depend on the compression method and size requested.
To the programmer, the process is completely transparent and
controllable with a single configuration file.

We also wrote a fused matrix-multiplication operation for DeepThin-

compressed networks directly in C++ with MKL [9]. We used two
major optimizations unique to the DeepThin method as demon-
strated in Figure 1.

4 Results

We compare the accuracy of two state-of-the-art speech recognition
models compressed with DeepThin for the same compression rate
against previous deep compression techniques, which include:

e HashedNet: A small set of possible weight values are dis-
tributed into a larger weight matrix according to a (compu-
tationally expensive) hashing function [3].

e Pruning: Matrices are iteratively pruned and the resultant
sparse matrices stored with CSR format until the overall size
is achieved [7].

e Same-Size Networks: Manually lowering the number of hid-
den units in a network until the desired size is reached

e Rank Factorization: Factoring weight matrices into smaller,
lower-rank factors [4, 14].

We also compare against DeepThin-Shuffled — a DeepThin-compressed

network where the weight values are randomly distributed through-
out the final weight matrix (as opposed to our re-layout operation).

Rank | Prune | SSNN | Hash
TFKaldi 60.08% | 56.96% | 23.40% | 6.12%
DeepSpeech | 28.09% | 27.21% | 20.45% | 12.16%

Table 1. Average relative accuracy improvement of DeepThin com-
pared to four other compression methods. Different compression
methods tend to perform better on different datasets, however
DeepThin consistently achieves better accuracy results than all
other compression methods tested.
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1) Conventional Compute Algorithm:

[ Yo= X0* X Wiot XTX*W i+ X2* X *Whor X3*X Wy |

[ Ya= X0 X Wior XU X W ot X2 X Wor x3*X 5wy |
11 FLOPS per Column — 22 FLOPS Total

2) DeepThin Optimized Algorithm:
[ Po= XO*W'gt X1*W'i+ X2*W5, |
[ P.= X3*Wh |
| Yo= Xo*Por X'y *P |
[ ¥s= X4*Pot X's*Py |

6 FLOPS Shared by
columns n stride part

3 Extra FLOPS per
Column

12 FLOPS Total

With Q and n being relatively prime, after LCM(n, Q) = n*Q entries — every n" column of Waxr Will be a scaled version
of the other. We can exploit this redundancy by factoring out the scale operations — multiplication by X' elements.

Figure 1. Exploiting redundancy generated by our DeepThin compression method to optimize computation of Y = X.Wqyg.
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Figure 2. Test word error rate comparison for the TFKaldi model.
DeepThin results in lower WERs at all compression rates except
for the very smallest configuration (for which HashedNet achieves
a lower WER at the cost of significant computational overhead).

We do not report results for CNN models because the unusually
large input/output buffers modern CNNs require would prevent
inference models from fitting on the target devices even if the
weights were completely removed (although there is no fundamen-
tal limitation of our method). However, preliminary results show
that DeepThin accuracy is on par with or better than competing
methods on state-of-the-art ResNet models.

Figure 2 and Figure 3 compare the test error for each compression
method on the TFKaldi [13] (a feed-forward network) and Deep-
Speech [2] models (a combination of convolutional, feed-forward,
and recurrent layers) respectively. DeepThin networks show bet-
ter results at practically all tested compression rates. The average
relative accuracy improvement is summarized in Table 1.

Table 2 demonstrates the impressive performance gains realiz-
able with DeepThin, reaching speeds of up to 14X faster than the
uncompressed model. This effect is more pronounced on smaller-
cache machines that more closely match a real-world client device,
though we also find large performance benefits on even the most
capable machine. Performance gains come from a combination

Figure 3. Test loss for the DeepSpeech model. DeepThin signifi-
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cantly outperforms all other compression methods.

TFKaldi DeepSpeech

~Size CONF1 CONF2 CONF3 CONF1 CONF2 CONF3

0.0195 3.80X 2.51X 2.46X 7.66X 2.24X 2.08X
0.0129 5.64X 3.16X 3.51X 10.66X 3.09X 2.77X
0.0099 6.47X 3.88X 4.09X 12.12X 3.50X 3.09X
0.0057 8.12X 4.21X 4.84X 13.69X 3.89X 3.67X
0.0040 8.53X 5.69X 5.32X 13.72X 3.86X 3.70X
0.0027 8.22X 5.22X 5.42X 13.04X 3.65X 3.46X
0.0020 7.43X 4.56X 4.58X 11.68X 3.36X 3.22X
0.0014 4.44X 4.12X 2.44X 8.72X 2.57X 2.42X

Table 2. Execution speed-ups (“X faster" than uncompressed) of
DeepThin models. CONF1: 1 memory channel/6 MB L3, CONF2:
8 channels/25 MB L3, CONF3: 16 channels/45 MB L3. Most of our
performance gains come from fitting the model into L3 cache. The
trend starts to reverse for extremely small models due to a reduction
in the amount of reuse possible (demonstrated in Figure 1).

of smaller memory footprints that can fit the entire model in the
caches, the inhererently simple operations required by DeepThin,
and finally DeepThin’s capability to re-use partial compututations.
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