
Automatic Differentiation in Myia
Extended Abstract

Olivier Breuleux
University of Montreal

breuleuo@iro.umontreal.ca

Bart van Merriënboer
University of Montreal

bart.van.merrienboer@umontreal.ca

ABSTRACT
Automatic differentiation is an essential feature of machine learn-
ing frameworks. However, existing implementations often have
limitations. In dataflow programming frameworks such as Theano
or TensorFlow the representation used makes supporting higher-
order gradients difficult. On the other hand, operator overloading
frameworks such as PyTorch are flexible, but do not lend themselves
well to optimization. With Myia, we attempt to have the best of
both worlds: Building on the work by Pearlmutter and Siskind we
implement a first-order gradient operator for a subset of the Python
programming language.

1 INTRODUCTION
1.1 Automatic differentiation
Gradient descent is the bread and butter of optimization in machine
learning, and it requires easy and efficient access to first and second
order derivatives.Automatic differentiation [6] (AD) provides this by
transforming a numerical program through applying the chain rule
to a set of primitive operators for which the derivatives are known.
This approach ensures a constant overhead per operation while
calculating derivatives accurately up to working precision. There
are two main ways to apply the chain rule: starting from the inputs
(forward-mode AD), or starting from the outputs (reverse-mode AD).

Reverse mode is usually preferred in machine learning because it
is more efficient than forwardmodewhen the number of parameters
is larger than the number of outputs. Implementing reverse mode is
more challenging than forward mode, since the control flow must
be reversed and the backward phase reuses the intermediate values
of the forward phase. In the presence of scoping and/or loops, this
requires the use of runtime data structures to keep values alive.
Further complications arise when AD must be implemented for
existing languages which did not account for it in their design.

Traditionally, two different implementation approaches are dis-
tinguished in the AD literature [3]: Operator overloading (OO) in-
volves tracing the program at runtime. Tracing follows function
calls and control flow, so the final trace is a linear series of elemen-
tary operations (the tape) to which we can apply the chain rule.
This approach is easy to implement and flexible, but may calculate
unneeded intermediate values, and if the execution path diverges
it requires repeated tracing and application of the chain rule.

Source code transformation (SCT) consists of applying the chain
rule directly to an intermediate representation of the program, pro-
ducing a new program that computes the derivative. This requires
a transformation that reverses the execution path of the program,
which means we need to explicitly consider control flow operators
and function calls. Note that the resulting program must still use a
runtime data structure to store intermediate values.

1.2 Automatic differentiation in ML
Many implementations of automatic differentiation exist [2]. How-
ever, machine learning frameworks with support for automatic
differentiation failed to build on existing software used in other
fields, and were developed almost entirely in parallel.

Theano [13] pioneered the use of automatic differentiation in
machine learning research. It requires the user to explicitly con-
struct a dataflow graph (computation graph) using Python. The
chain rule is then applied to this graph followed by a series of op-
timizations. The computation graphs on which Theano operates,
however, have little expressive power: there are no function calls
and there is only limited support for loops through the monolithic
scan construct. The explicit construction of the graph is also a
tedious and error-prone process for the user.

TensorFlow [1] built on the dataflow programming paradigm,
but without addressing all the fundamental flaws. TensorFlow’s
graphs must also be manually built. They also suffer from limited
expressive power, and a fortiori, so do their derivatives.

PyTorch [10] uses operator overloading, and hence benefits from
the full expressivity of the Python language. That said, it inherits
the shortcomings inherent to the operator overloading approach.

Other machine learning frameworks with support for AD have
been developed over the years such asMXNet, CNTK, Caffe, Chainer,
Autograd, torch-autograd, etc. In general though, the same two
techniques are employed: Either the user is required to explicitly
construct a dataflow graph, or operator overloading is used.

2 MYIA
Myia1’s objective is to combine the usability of frameworks such as
PyTorch, which allow users to write code directly in a dynamic lan-
guage, with the performance benefits of source code transformation.
Myia strives to support the following:

• Like Theano or TensorFlow, it should be amenable to static
analysis and global optimization.
• Like PyTorch, the automatic differentiation should be fully
general and support all major programming language con-
structs (function calls, conditionals, loops, recursion, etc.)
• Tight integration with the Python ecosystem, which is still
the language of choice of most deep learning researchers.

2.1 Intermediate representation
Myia’s approach is to parse the user’s Python code into a func-
tional representation which is amenable to reverse mode automatic
differentiation. The resulting code is not executed by the Python
interpreter, but by a custom runtime.

1Code available at https://github.com/mila-udem/myia

SysML’18, February 2018, Stanford, CA USA Breuleux et al.

Myia’s representation is graph-based and partly inspired from
sea-of-nodes [4] and Thorin [7]. Like these representations, but un-
like Theano or TensorFlow, it readily supports function abstraction,
closures and recursion. In order to simplify algebraic optimizations
and parallel scheduling, we use graph-based A-normal form [5]
rather than CPS, the latter being too rigid about evaluation order.
We have implemented crude inlining, dead code elimination, com-
mon subexpression elimination, constant propagation, and a few
other simple optimizations.

2.2 Python parsing
While Myia’s IR is different from Python, there is a straightforward
translation. Figure 1 shows how a while loop is translated. Myia
also supports if, for, nested def and lambda, simple and mutual
recursion, and most arithmetic and logical operators.

Myia does not aim to support all of Python’s features. In order
to enable type inference and static optimization, we require objects
to have static types and we disallow dynamic features such as eval.
The most significant difference, however, is that Myia does not
support destructive assignment i.e. statements of the form x[i] =
y or x += y which assume mutability.2

There are two issues with destructive assignment. The first is that
it is a side effect that creates potentially complex data dependencies,
impeding code analysis, optimization and parallelism. The second is
particular to the problem of reverse-mode automatic differentiation:
In order to perform the backpropagation pass, we need to be able to
trace back the computation, and we will likely need the old value of
x. Hence we deviate from the standard Python semantics in Myia,
and interpret x[i] = y similarly to e.g., OCaml’s functional update
syntax. One can read it as x = x with x[i] = y, which only
shadows the x variable without modifying the original data.

3 THE GRADIENT TRANSFORM
Myia presently offers a first-class higher order method, grad (more
may be added in the future, e.g. for forward AD). grad performs
reverse-mode AD on its argument and returns a function such
that grad(f)(x, y) == df(x, y)/dx. We have the following
requirements for this transform:

(1) It must be able to differentiate any valid program.
(2) Nested application of grad must be supported, allowing for

higher-order derivatives to be taken.
(3) It must be amenable to type inference and optimization.
As discussed earlier, operator overloading does not lend itself

well to optimization. On the other hand, most traditional source
code transformationmethods use a stack (tape) to store intermediate
values on at runtime. This introduces a mutable runtime structure
into the program, which complicates type inference and optimiza-
tion. Higher-order gradients are complicated by the fact that the
gradient transform must explicitly handle read and write opera-
tions on this tape. If, on the other hand, the transform produces
a program without side-effects and valid in the original formula-
tion, then it should be possible to get higher order gradients simply
by applying the transform repeatedly. Since we do not introduce

2Note that the statement x = x + y is not considered to be a destructive assignment,
because it can be safely rewritten as an assignment to a new variable: x2 = x + y,
with substitution of x2 for every occurrence of x following the assignment.

@myia
def pow(x, n):
 r = 1
 while n > 0:
 r *= x
 n -= 1
 return r

Figure 1: Transform of a simple Python program intoMyia’s
representation. Grey boxes are functions, green nodes are
inputs, orange nodes are return nodes, blue nodes are appli-
cations, pink nodes are constants. Pointers from a function
to another means the former is a closure nested in the lat-
ter. (...) builds a tuple of its inputs and [0] takes the first
element of a tuple.

explicit runtime data structures, all regular optimization methods
will remain valid and effective.

In [9] a method for implementing reverse mode AD in functional
languages is introduced. It defines a source code transformation
(denoted

←−
J) on functions such that as the forward computation

progresses, the backpropagation computation is constructed as a
chain of closures. That chain packages together the intermediate
computations with the code necessary to compute and combine
gradients with respect to them, eliminating the need for a tape. The
difficulty of taking derivatives in the presence of closures is solved
by tracking the gradients with respect to their free variables. This
approach thus satisfies the desire to be able to differentiate any
valid program while supporting higher-order differentiation.

Optimization of functional programs, including the optimization
of closures, is a well-studied field [11][12]. Even using a limited set
of local optimizations and inlining, we were able to simplify the
gradient of straightforward programs to resemble what one would
write by hand.

4 FUTUREWORK
Myia is currently a functioning prototype, but we see many avenues
to improvement and new features. We plan to implement advanced
control flow analysis in order to help optimizing the output of the
gradient transform in the general case. We also intend on writing a
GPU-enabled backend for Myia, and compiling down to a lower-
level language. We are also considering approaches to dealing with
the overhead of the “copy on write” implementation of x[i] = y,
which guarantees the immutability of arrays, for example by using
persistent data structures [8].

Automatic Differentiation in Myia SysML’18, February 2018, Stanford, CA USA

REFERENCES
[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,
Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Leven-
berg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike
Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.
2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.
(2015). https://www.tensorflow.org/ Software available from tensorflow.org.

[2] Atilim Gunes Baydin, Barak A Pearlmutter, Alexey Andreyevich Radul, and
Jeffrey Mark Siskind. 2015. Automatic differentiation in machine learning: a
survey. arXiv preprint arXiv:1502.05767 (2015).

[3] Christian H Bischof andHMartin Bücker. 2000. Computing derivatives of computer
programs. Technical Report. Argonne National Lab., IL (US).

[4] Cliff Click and Keith D. Cooper. 1995. Combining Analyses, Combining Op-
timizations. ACM Trans. Program. Lang. Syst. 17, 2 (March 1995), 181–196.
https://doi.org/10.1145/201059.201061

[5] Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen. 1993. The
Essence of Compiling with Continuations. In Proceedings of the ACM SIGPLAN
1993 Conference on Programming Language Design and Implementation (PLDI ’93).
ACM, New York, NY, USA, 237–247. https://doi.org/10.1145/155090.155113

[6] Andreas Griewank and Andrea Walther. 2008. Evaluating Derivatives: Principles
and Techniques of Algorithmic Differentiation (second ed.). Society for Industrial
and Applied Mathematics, Philadelphia, PA, USA.

[7] Roland Leissa, Marcel Koster, and Sebastian Hack. 2015. A Graph-based Higher-
order Intermediate Representation. In Proceedings of the 13th Annual IEEE/ACM
International Symposium on Code Generation and Optimization (CGO ’15). IEEE
Computer Society, Washington, DC, USA, 202–212. http://dl.acm.org/citation.
cfm?id=2738600.2738626

[8] Chris Okasaki. 1998. Purely Functional Data Structures. Cambridge University
Press, New York, NY, USA.

[9] Barak A. Pearlmutter and Jeffrey Mark Siskind. 2008. Reverse-mode AD in
a functional framework: Lambda the ultimate back propagator. ACM Trans.
Program. Lang. Syst. 30, Article 7 (March 2008), 36 pages. Issue 2.

[10] PyTorch Development Team. 2017. PyTorch: Tensors and Dynamic neural net-
works in Python with strong GPU acceleration. (2017). http://pytorch.org/
http://pytorch.org/.

[11] Olin Grigsby Shivers. 1991. Control-flow Analysis of Higher-order Languages
of Taming Lambda. Ph.D. Dissertation. Pittsburgh, PA, USA. UMI Order No.
GAX91-26964.

[12] Jeffrey Siskind and Barak Pearlmutter. 2008. Using Polyvariant Union-Free Flow
Analysis to Compile a Higher-Order Functional-Programming Language with a
First-Class Derivative Operator to Efficient Fortran-like Code. Technical Report.

[13] Theano Development Team. 2016. Theano: A Python framework for fast compu-
tation of mathematical expressions. arXiv e-prints abs/1605.02688 (May 2016).
http://arxiv.org/abs/1605.02688

https://www.tensorflow.org/
https://doi.org/10.1145/201059.201061
https://doi.org/10.1145/155090.155113
http://dl.acm.org/citation.cfm?id=2738600.2738626
http://dl.acm.org/citation.cfm?id=2738600.2738626
http://pytorch.org/
http://arxiv.org/abs/1605.02688

	Abstract
	1 Introduction
	1.1 Automatic differentiation
	1.2 Automatic differentiation in ML

	2 Myia
	2.1 Intermediate representation
	2.2 Python parsing

	3 The gradient transform
	4 Future work
	References

