
TFX Frontend: A Graphical User Interface for a Production-Scale
Machine Learning Platform

Extended Abstract

Peter Brandt, Josh Cai, Tommie Gannert, Pushkar Joshi, Rohan Khot, Chiu Yuen Koo, Chenkai
Kuang, Sammy Leong, Clemens Mewald, Neoklis Polyzotis, Herve Quiroz, Sudip Roy, Po-Feng

Yang, James Wexler, Steven Euijong Whang
Google Inc.∗

1 INTRODUCTION
The widespread use of machine learning has highlighted the need
for platforms that provide integrated tools for all phases of the
machine learning development process. An end-to-end machine
learning platform contains components that span from ingesting
raw data to serving a model and logging its predictions. TFX [1] is
one implementation of such a platform that is used for production-
scale machine learning at Google.

In this extended abstract we discuss the TFX frontend, which is
a unified and guided interface that supports workflows that span
across all TFX components. It is the primary interface via which our
users interact with TFX and inspect the result of their interactions.

2 PROPERTIES
We will illustrate1 high-level properties of the TFX frontend that
distinguish it from others.

IntegratedWorkflows:A TFX pipeline consists of several com-
ponents. From a DevOps perspective, quickly visualizing the status
of each of these components is crucial. From a modeler or data sci-
entist’s perspective, a detailed, visual analysis of the output of the
components is valuable. DevOps and modeler workflows are often
related (e.g. a drop in model quality may be the result of corrupted
input data due to the failure of a data processing job). The TFX
frontend provides an integrated and guided view of all aspects of
the pipeline, according to the gestalt principle [3].

At the same time, TFX integrates with many of Google’s internal
services (e.g. Vizier [2]) each of which has its own UI. The TFX
frontend deep-links to these services so that experienced users
can quickly access them, and novice users are guided to relevant
information without having to learn unfamiliar navigation flows.

Support for Interactive Notebooks: Data scientists and mod-
elers often prefer interactive workflows to iterate on model struc-
ture and analyze data and models. To support these workflows,
several aspects of the TFX frontend are launched as customizable

∗Corresponding author: Pushkar Joshi: pushkarj@google.com
1Screenshots will be provided at the conference & are not included here for space
reasons.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SysML 2018, February 2018, Stanford, CA, USA.
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

interactive (iPython) notebooks. Embedding the same visualizations
in interactive notebook workflows as are shown on the TFX fron-
tend reduces cognitive load and ensures consistent use of nomen-
clature. To support current and future notebook experiences, we
developed visualization UIs as stand-alone web components that
are embedded in an the integrated TFX frontend. We optimize the
notebook experience by deep-linking (pre-filling inputs) to specific
notebooks.

Importance of PipelineHealthVisualization:TFX pipelines
operate at "Google-scale", which means they consist of jobs that
consume large amounts of resources and may be evicted by higher
priority jobs intermittently. Quickly understanding job health and
the existence and cause of potential failures saves precious time
during debugging. For this reason, the TFX frontend offers a wide
range of tools for debugging pipeline health issues.

Granularity of Data- and Model-Analysis: Data scientists
and modelers require tools for data- or model-analysis at different
granularity: a quick inspection of aggregate metrics v/s a detailed
deep-dive at the individual example level. The TFX frontend offers
tools that provide aggregate views as well as the ability to drill
down into detailed and rich data- and model-analysis views.

3 WORKFLOWS
We describe features for some workflows regularly performed by
TFX users via the frontend. The workflows can be categorized as: (1)
pipeline management, (2) input data understanding, and (3) model
analysis.

In the following subsections, each workflow is prefixed by the
question users usually are trying to answer during the process of
the workflow.

3.1 Pipeline Management
Pipeline Structure
"What components are part of the pipeline and what are their depen-
dencies?"
The TFX frontend provides a graph that visualizes all configured
components, their dependencies, and a set of additional informa-
tion to assess pipeline status and health (discussed below). In ad-
dition to providing actionable insights into the pipeline structure
that resulted from the user configuration, this visualization is also
commonly used in users’ design documents to communicate the
anatomy of the TFX pipeline to important stakeholders.

Status and Health
"What is the pipeline status and health?"

https://doi.org/10.1145/nnnnnnn.nnnnnnn


SysML 2018, February 2018, Stanford, CA, USA. Brandt et al.

TFX components are executed as jobs on Google’s cluster manage-
ment system Borg [4]. For every component, the above-mentioned
dependency graph also visualizes its job health and a color-coded
success/failure report of its most recent iterations. In addition, a
more detailed tabular view provides status messages for each com-
ponent that indicate the duration and result of its most recent
iteration, and, in cases of failure, the most pertinent log messages
for debugging.

Debugging and Alerts
"What part of the pipeline needs attention and what is the root cause
of a potential failure?"
To help with root cause analysis, every TFX component can send
debug signals to the frontend. These signals are visualized in groups
based on their criticality and can be configured to alert users via
email or visually in the frontend through superimposed alert boxes.
Each signal is accompanied bymetadata provided by the component
and instructions that help with root cause analysis.

3.2 Input Data
Feature Statistics
"Do the structure and distribution of my datamatchmy expectations?"
Aggregate statistics for each feature in the data are visualized using
Facets Overview [5]. This visualization includes histogram and
quantile charts, as well as statistics specific to numerical (e.g. mean,
standard deviation) and categorical (e.g. string domain, mode value)
features.

The visualization guides analysis by providing actionable in-
sights such as the number of examples that are missing a specific
feature (e.g. due to a failure in an upstream data processing job) or
the uniformity of the feature distribution (e.g. to identify a skewed
feature).

Data Samples
"Are examples structured as expected and how do they correlate with
the label?"
The TFX frontend enables visualization of data samples using Facets
Dive [5]. In addition to being able to see all feature values for any
specific example in the data sample, Facets Dive allows users to
organize the set of examples by multiple features in the dataset.
Individual examples can be partitioned, positioned, and colored by
different features, leading to easy creation of scatter plots, confusion
matrices, and other powerful visualizations. Users can investigate
relationships between features, such as seeing how features are
correlated with a label feature, which can be useful in feature engi-
neering.

Data Anomalies
"Do the structure and distribution of the data change over time?"
The TFX frontend displays data anomalies (e.g., examples with
missing values, feature values that are out of range, previously
unseen features) that are detected in the input data based on a
schema [1], which captures the expected shape of the input data.
The anomalies are visualized in a grid where each cell contains a
summary of the anomalies that were identified for a feature over
a specific range of input data. For each summary, the component
suggests a fix to the schema in case the underlying change in the
data is expected (e.g. a new feature was added).

The TFX frontend can also overlay distributions of multiple
datasets in a single visualization, which allows users to investigate
any skew between datasets (e.g. the value distributions between the
training and serving data are different). When comparing multiple
datasets, the features can be sorted by the distribution distance be-
tween the datasets being compared. This is helpful for investigating
training/test skew, training/serving skew, or skew across training
data from different time periods.

3.3 Model Analysis
Evaluation History
"How has the model improved over time?"
To evaluate and monitor the performance of a model over time (e.g.
newly trained models or the same model over new versions of data),
the TFX frontend provides time-series graphs of evaluation metrics
(e.g. logistic loss, AUROC) relevant to the machine learning task
(e.g. binary classification). This visualization can also be used to
compare quality metrics of different models or specific data slices
(see below) over time and is commonly used in making launch
decisions for new models.

Evaluation Details
"How consistent is the model quality over all examples?"
In addition to computing quality metrics over the entire dataset, the
TFX evaluation component can be configured to produce quality
metrics sliced by features or specific feature values. The TFX fron-
tend provides an interactive component that allows data scientists
and modelers to visualize a histogram of metrics for different values
of a feature (e.g. for all values of the feature ‘country’) and to drill
down into the distribution of metrics for a specific feature value
(e.g. for features with the value ‘country:US’).

Validation
"Does the model meet product and serving infrastructure require-
ments?"
TFX validates models both for quality (to meet product require-
ments) and compatibility with the serving system (to meet compat-
ibility requirements). The results of these validations are visualized
over time as new models are trained. In a time-series graph, users
can visually inspect the validation result and whether it is above or
below the configured threshold.

4 IMPLEMENTATION
The TFX frontend consists of a Polymer web application backed by
a Go web server. The web server handles REST requests by connect-
ing to a pipeline-specific Go server ("Controller"). The Controller
serves three main purposes. It (1) authenticates the users and en-
sures they have access to the pipeline storage, jobs, and services,
(2) serves requests to route the outputs of TFX components from
the pipeline storage to the web server, and (3) serves requests to
route information like pipeline state, job health, and job status from
Google infrastructure services to the web server.

Upon loading the page the TFX frontend asynchronously sends
XmlHttpRequests to the Controller to curate all of the information
and data needed for a particular view. We assume that the user is
on an unmetered, high bandwidth network and viewing the UI on
a (large) desktop screen.



TFX Frontend: A Graphical User Interface for a Production-Scale Machine Learning PlatformSysML 2018, February 2018, Stanford, CA, USA.

REFERENCES
[1] Denis Baylor, Eric Breck, Heng-Tze Cheng, Noah Fiedel, Chuan Yu Foo, Zakaria

Haque, Salem Haykal, Mustafa Ispir, Vihan Jain, Levent Koc, Chiu Yuen Koo,
Lukasz Lew, Clemens Mewald, Akshay Naresh Modi, Neoklis Polyzotis, Sukriti
Ramesh, Sudip Roy, Steven Euijong Whang, Martin Wicke, Jarek Wilkiewicz, Xin
Zhang, and Martin Zinkevich. 2017. TFX: A TensorFlow-Based Production-Scale
Machine Learning Platform. In Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD ’17). ACM, New York,
NY, USA, 1387–1395. https://doi.org/10.1145/3097983.3098021

[2] Daniel Golovin, Benjamin Solnik, Subhodeep Moitra, Greg Kochanski,
John Elliot Karro, and D. Sculley (Eds.). 2017. Google Vizier: A Ser-
vice for Black-Box Optimization. http://www.kdd.org/kdd2017/papers/view/
google-vizier-a-service-for-black-box-optimization

[3] Kayur Patel, Naomi Bancroft, Steven M. Drucker, James Fogarty, Andrew J. Ko, and
James Landay. 2010. Gestalt: Integrated Support for Implementation and Analysis
in Machine Learning. In Proceedings of the 23Nd Annual ACM Symposium on User
Interface Software and Technology (UIST ’10). ACM, New York, NY, USA, 37–46.
https://doi.org/10.1145/1866029.1866038

[4] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu, David Oppenheimer, Eric
Tune, and JohnWilkes. 2015. Large-scale ClusterManagement at Google with Borg.
In Proceedings of the Tenth European Conference on Computer Systems (EuroSys ’15).
ACM, New York, NY, USA, Article 18, 17 pages. https://doi.org/10.1145/2741948.
2741964

[5] James Wexler and Jimbo Wilson. 2017. Facets: Visualizations for machine learning
datasets. (2017). https://github.com/pair-code/facets

https://doi.org/10.1145/3097983.3098021
http://www.kdd.org/kdd2017/papers/view/google-vizier-a-service-for-black-box-optimization
http://www.kdd.org/kdd2017/papers/view/google-vizier-a-service-for-black-box-optimization
https://doi.org/10.1145/1866029.1866038
https://doi.org/10.1145/2741948.2741964
https://doi.org/10.1145/2741948.2741964
https://github.com/pair-code/facets

	1 Introduction
	2 Properties
	3 Workflows
	3.1 Pipeline Management
	3.2 Input Data
	3.3 Model Analysis

	4 Implementation
	References

