
Learned Index Structures
Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, Neoklis Polyzotis

ABSTRACT
Indexes are models: a BTree-Index can be seen as a model to
map a key to the position of a record within a sorted array, a
Hash-Index as a model to map a key to a position of a record
within an unsorted array, and a BitMap-Index as a model to
indicate if a data record exists or not. In this talk, we start
from this premise and posit that all existing index structures
can be replaced with other types of models, including deep-
learning models, which we term learned indexes. The key
idea is that a model can learn the sort order or structure
of lookup keys and use this signal to effectively predict the
position or existence of records. Our initial results show,
that by using simple neural nets we are able to outperform
cache-optimized B-Trees by up to 70% in speed while saving
an order-of-magnitude in memory over several real-world
data sets. More importantly though, we believe that the idea
of replacing core components of a (data management) system
through learned models might have significant implications
for future systems designs.

1. INTRODUCTION
Whenever efficient data access is needed, index structures

are the answer, and a wide variety of choices exist to address
the different needs of various access pattern. For example,
for range requests (e.g., retrieve all records in a certain
timeframe) B-Trees are the best choice. If data is only looked
up by a key, Hash-Maps are hard to beat in performance. In
order to determine if a record exists, an existence index like
a Bloom-filter is typically used. Because of the importance
of indexes for database systems and many other applications,
they have been extensively tuned over the last decades to be
more memory, cache and/or CPU efficient [3, 6, 2, 1].
Yet, all of those indexes remain general purpose data

structures, assuming the worst-case distribution of data and
not taking advantage of more common patterns prevalent
in real world data. For example, if the goal would be to
build a highly tuned system to store and query fixed-length
records with continuous integers keys (e.g., the keys 1 to
100M), one would not need to use a conventional B-Tree
index over the keys since they key itself can be used as
an offset, making it a constant O(1) rather than O(logn)
operation to look-up any key or the beginning of a range of
keys. Similarly, the index memory size would be reduced
from O(n) to O(1). Of course, in most real-world use cases
the data does not perfectly follow a known pattern, and it
is usually not worthwhile to engineer a specialized index for
every use case. However, if we could learn a model, which
reflects the data patterns, correlations, etc. of the data,
it might be possible to automatically synthesize an index
structure, a.k.a. a learned index, that leverages these
patterns for significant performance gains.
In this talk, we will explain to what extent learned models,

including neural networks, can be used to replace traditional
index structures from Bloom-Filters to B-Trees. This may

seem counter-intuitive because machine learning cannot pro-
vide the semantic guarantees we traditionally associate with
these indexes, and because the most powerful machine learn-
ing models, neural networks, are traditionally thought of
as being very expensive to evaluate. We argue that none
of these obstacles are as problematic as they might seem
with potential huge benefits, such as opening the door to
leveraging hardware trends in GPUs and TPUs.
In the following we only outline, why B-Trees can be

replaced with learned models. We refer to our technical
report at [4] for a more in depth discussion why other index
structures can also be replaced using models.

2. RANGE INDEX
In the case of range indexes, the data is stored in sorted

order and an index is built to find the starting position of
the range in the sorted array. Once the position at the start
of the range is found, the database can merely walk through
the ordered data until the end of the range is found. (We do
not consider inserts or updates for now.)
2.1 Background
The most common index structure for finding the position

of a key in the sorted array is a B-Tree. B-Trees are balanced
and cache-efficient trees. They differ from more common
trees, like binary trees, in that at each node has a fairly
large branching factor (e.g., 100) to match the page size for
efficient memory hierarchy usage (i.e., the top-k nodes of the
tree always remain in cache). As such, for each node that is
processed, the model gets a precision gain of 100. Of course,
processsing a node takes time. Typically, traversing a single
node of size 100, assuming it is in cache, takes approximately
50 cycles to scan the page (we assume scanning, as it is
usually faster than binary search at this size).

2.2 Learned Ranged Index
At the core, B-Trees are models of the form f(key)→ pos.

We will use the more common machine learning notation
where the key is represented by x and the position is y.
Because we know all of the data in the database at training
time (index construction time), our goal is to learn a model
f(x) ≈ y. Interestingly, because the data x is sorted, f is
modeling the cumulative distribution function (CDF) of data,
a problem which has received some attention [5]1.

2.2.0.1 Model Architecture.
As a regression problem, we train our model f(x) with

squared error to try to predict position y. The question is
what model architecture to use for f . As outline above, for
the model to be successful, it needs to improve the precision
of predicting y by a factor greater than 100 in a less than
50 CPU cycles. With often many million of examples and
needing high accuracy, building one large wide and deep
1This assumes records are fixed-length. If not, the function
is not the CDF, but another monotonic function.

1



Model 1.1

Model 2.1 Model 2.2 Model 2.3

Model 3.1 Model 3.2 Model 3.3 Model 3.4

…

…

St
ag

e 
1

St
ag

e 
3

St
ag

e 
2

Position

Key

Figure 1: Staged models
neural network often gives not very strong accuracy while
being expensive to execute. Rather, inspired by the mixture
of experts work [7], we build a hierarchy of models (see Figure
1). We consider that we have y ∈ [0, N) and at stage ` there
are M` models. We train the model at stage 0, f0(x) = y.
As such, model k in stage `, denoted by f

(k)
` , is trained with

loss:

L` =
∑
(x,y)

(f
(f`−1(x))

` (x)− y)2 L0 =
∑
(x,y)

(f0(x)− y)2

Note, we use here the notation here of f`−1(x) recursively

executing f`−1(x) = f
(f`−2(x))
`−1 (x). Therefore, in total, we

iteratively train each stage with loss L` to build the complete
model. Interestingly, we find that it is necessary to train
iteratively as Tensorflow has difficulty scaling to computation
graphs with tens of thousands of nodes.

2.2.0.2 Constraints.
Unlike typical ML models, it is not good enough to return

the approximate solution. Rather, at inference time, when
the model produces an estimate of the position, we must
find the actual record that corresponds to the query key.
Traditionally, B-Trees provide the location of the beginning
of the page where the key lies. For learned indexes, we
need to search around the prediction, to actually find the
beginning of the range.
Interestingly, we can easily bound the error of our model

such that we can use classic search algorithms like binary
search. This is possible because we know at training time
all keys the model is indexing. As such, we can compute the
maximum error ∆ the model produces over all keys, and at
inference time perform a search in the range [ŷ −∆, ŷ + ∆].
Further, we can consider the model’s error over subsets of
the data. For each model k in the last stage of our overall
model, we compute its error ∆k. This turns out to be quite
helpful as some parts of the model are more accurate than
others, and as the ∆ decreases, the lookup time decreases.
An interesting future direction is to minimize worst-case
error ∆ rather than average error. In some cases, we have
also built smaller B-Trees to go from the end of the model
predictions to the final position. These hybrid models are
often less memory efficient but can improve speed due to
cache-efficiency.

2.3 Experiments
We have run experiments on 200M web-log records with

complex patterns created by school holidays, hourly-variations,
special events etc. We assume an index over the timestamps
of the log records (i.e., an index over sorted, unique 32bit
timestamps). We used a for read-workloads cache-optimized
B-Tree with a page-size of 128 as the baseline, but also eval-
uated other page sizes. The B-Tree is dense and does not
have any free space for inserts. As the learned range index

Type Config
Total	
(ns)

Model	
(ns)

Search	
(ns) Speedup

Size	
(MB)

Size	
Savings

B-Tree page	size:			64 274 169 105 4% 24.92 100%
page	size:	128 263 131 131 0% 12.46 0%
page	size:	256 271 117 154 3% 6.23 -50%

Learned 2nd	stage	size:			10,000 178 26 152 -32% 0.15 -99%
Index 2nd	stage	size:			50,000 162 35 127 -38% 0.76 -94%

2nd	stage	size:	100,000 152 36 116 -42% 1.53 -88%
2nd	stage	size:	200,000 146 40 106 -44% 3.05 -76%

Figure 2: Performance learned index vs B-tree.

we used a 2-stage model (1st stage consist of 1 linear model,
2nd stage consist of varying number of linear models). We
evaluated the indexes on an Intel-E5 CPU with 32GB RAM
without a GPU/TPU. Results of our experiments can be seen
in Figure 2. We find that learned indexes are significant
faster than B-Tree models while using much less memory.
This results is particular encouraging as the next generation
of TPUs/GPUs will allow to run much larger models in less
time (though the invokation time of TPUs/GPUs might be
a challenge).

3. FUTURE DIRECTIONS AND CONCLU-
SION

In our arxiv paper [4] we describe how other index struc-
tures, such as BloomFilters or HashMaps, can also be en-
hanced using machine learning models. We believe this
perspective opens the door for numerous new research direc-
tions ranging from new indexes which can better leverage
GPUs to novel index structures for multi-dimensional data
up to extending the idea to other algorithms/data structures,
such as sorting.

Acknowledgements: We would like to thank Chris Olston
for his feedback during the development of this work.

4. REFERENCES
[1] K. Alexiou, D. Kossmann, and P.-A. Larson. Adaptive

range filters for cold data: Avoiding trips to siberia.
Proc. VLDB Endow., 6(14):1714–1725, Sept. 2013.

[2] B. Fan, D. G. Andersen, M. Kaminsky, and M. D.
Mitzenmacher. Cuckoo filter: Practically better than
bloom. In CoNEXT, 2014.

[3] G. Graefe and P. A. Larson. B-tree indexes and cpu
caches. In ICDE, pages 349–358, 2001.

[4] T. Kraska, A. Beutel, E. H. Chi, J. Dean, and
N. Polyzotis. The Case for Learned Index Structures.
ArXiv e-prints, Dec. 2017.

[5] M. Magdon-Ismail and A. F. Atiya. Neural networks for
density estimation. In M. J. Kearns, S. A. Solla, and
D. A. Cohn, editors, NIPS, pages 522–528. 1999.

[6] S. Richter, V. Alvarez, and J. Dittrich. A
seven-dimensional analysis of hashing methods and its
implications on query processing. Proc. VLDB Endow.,
9(3):96–107, Nov. 2015.

[7] N. Shazeer, A. Mirhoseini, K. Maziarz, A. Davis, Q. Le,
G. Hinton, and J. Dean. Outrageously large neural
networks: The sparsely-gated mixture-of-experts layer.
arXiv preprint arXiv:1701.06538, 2017.

2


	Introduction
	Range Index
	Background
	Learned Ranged Index
	Experiments

	Future Directions and Conclusion
	References

