
Deep Learning with Apache SystemML
Niketan Pansare1, Michael Dusenberry2, Nakul Jindal2,
Matthias Boehm1, Berthold Reinwald1, Prithviraj Sen1

1IBM Research - Almaden
2IBM Spark Technology Center

1 INTRODUCTION
Deep Learning (DL) is a subfield of Machine Learning (ML) that
focuses on learning hierarchical representations of data with mul-
tiple levels of abstraction using neural networks [15]. Recent ad-
vances in deep learning are made possible due to the availability of
large amounts of labeled data, use of GPGPU compute, and appli-
cation of new techniques (such as ReLU, batch normalization [12],
dropout [17], residual block [10], etc.) that help deal with issues
in training deep networks. In spite of the need to train on large
datasets, there is a disconnect between the deep learning commu-
nity and the big data community. To scale to a multi-node cluster,
most deep learning frameworks (such as Caffe2, TensorFlow [2]
and IBM’s PowerAI DDL [6]) use custom communication libraries
based on either MPI (such as IBM Spectrum MPI, Facebook’s Gloo)
or a custom networking protocol (such as Google RPC). Unlike pop-
ular big data frameworks (such as Apache Hadoop [9] and Apache
Spark [18]), these communication libraries do not provide features
such as resource sharing, multi-tenancy and fault-tolerance out
of the box, making them difficult to deploy on shared production
clusters. This leads to ineffective use of resources in an organi-
zation, often requiring two separate infrastructures (i.e. scale-up
versus scale-out). This problem is even more severe when the data
generated as part of the big data pipeline (ML, data preprocessing,
data cleaning) needs to be consumed by the deep learning pipeline
or vice versa, as the workload characteristics of a typical machine
learning algorithm (i.e. memory-bound, BLAS level-2, sparse/ultra-
sparse inputs (or feature matrix), etc.) are often different than that
of a typical deep learning algorithm (i.e. compute-bound, BLAS
level-3, dense inputs, etc.). Apache SystemML [4] aims to bridge
that gap by seamlessly integrating with underlying big data frame-
works and by providing a unified framework for implementing
machine learning and deep learning algorithms.

In Apache SystemML, the ML algorithms are implemented using
a high-level R-like language called DML (short for Declarative Ma-
chine Learning). DML improves the productivity of data scientists
by enabling them to implement their ML algorithm with precise se-
mantics as well as abstract data types and operations, independent
of the underlying data representation or cluster characteristics. For
the given DML script, SystemML’s cost-based compiler automati-
cally generates hybrid runtime execution plans that are composed
of single-node and distributed operations depending on data and
cluster characteristics such as data size, data sparsity, cluster size
and memory configurations, while exploiting the capabilities of
underlying data-parallel frameworks such as MapReduce or Spark.
This allows for algorithm reusability across data-parallel frame-
works, and simplified deployment for varying data characteristics
and runtime environments, ranging from low-latency scoring to
large-scale training.

2 DEEP LEARNING APIS
NN Library. As with other ML algorithms, users can implement
their deep learning models using DML. SystemML 1.0 does not
support automatic differentiation, thus the user has to write the
DML code for the partial derivatives (i.e., the backward pass) of each
layer. SystemML ships with a Neural Network (NN) library that
supports 20+ pre-implemented layers (for example: conv2d, affine,
relu, etc.) and 6 optimizers (namely Adagrad, Adam, RMSprop, SGD,
SGDwith momentum, and SGDwith Nesterov momentum) to assist
in writing algorithms. Each layer in the NN library has an init,
forward, and backward function. The NN library is implemented
entirely in DML, allowing the user to conveniently add custom
layers and modify existing layers. The DML script for training
a softmax classifier in SystemML using the minibatch gradient
descent algorithm and the affine, softmax, and cross entropy layers
is given below:

sou r c e ("nn / layers / affine.dml") a s a f f i n e
sou r c e ("nn / layers / cross_entropy_loss.dml") a s c r o s s _ en t ropy _ l o s s
sou r c e ("nn / layers / softmax.dml") a s so f tmax
sou r c e ("nn / optim / sgd.dml") a s sgd
t r a i n = f un c t i o n (ma t r i x [doub le] X , ma t r i x [doub le] Y) {
D = nco l (X) # num f e a t u r e s
K = nco l (Y) # num c l a s s e s
l r = 0 . 0 1 ; ba t ch _ s i z e = 3 2 ; num_ i t e r = nrow (X) / ba t ch _ s i z e
[W, b] = a f f i n e : : i n i t (D , K)
f o r (i i n 1 : num_ i t e r) {

Get ba t c h
beg = (i −1) ∗ ba t ch _ s i z e + 1 ; end = beg + ba t ch _ s i z e
X_ ba t ch = X[beg : end ,] ; y_ ba t ch = Y[beg : end ,]
Pe r f o rm fo rwa rd pa s s
s c o r e s = a f f i n e : : fo rward (X_ batch , W, b) # o r X_ ba t ch % ∗% W + b
probs = so f tmax : : forward (s c o r e s)
Pe r f o rm backward pa s s
dprobs = c r o s s _ en t ropy _ l o s s : : backward (probs , y_ ba t ch)
d s c o r e s = so f tmax : : backward (dprobs , s c o r e s)
[dX_ batch , dW, db] = a f f i n e : : backward (dout , X_ batch , W, b)
Pe r f o rm upda t e
W = sgd : : update (W, dW, l r)
b = sgd : : update (b , db , l r)

}
}

Keras2DML/Caffe2DMLAPI.Currently active DL expertsmay
be familiar with popular packages such as Keras [7] or Caffe [14]
and may want to avoid learning a new language like DML. Or one
may want to use publicly available pre-trained Keras/Caffe models
and also leverage SystemML’s distributed execution on Spark. To
support such users, SystemML ships with python APIs - Keras2DML
and Caffe2DML - that accept the DL models expressed in Keras or
Caffe format and generate the equivalent DML script. Furthermore,
these APIs allow a Python programmer to invoke SystemML’s al-
gorithms using a scikit-learn like API (which accepts NumPy
arrays, SciPy matrices, or Pandas DataFrames) as well as Spark’s
MLPipeline API (which accepts Spark DataFrames). Since these
APIs conform to MLPipeline’s Estimator interface, they can be used
in tandem with MLLib’s feature extractors, transformers, scoring

and cross-validation classes. Also, these APIs support loading pre-
trained weights in the Caffe and Keras format for transfer learning
and prediction. Assuming input matrices X and Y are NumPy arrays,
the equivalent Python code for the above DML script is as follows:

from ke r a s . models impor t S e q u e n t i a l
from ke r a s . l a y e r s impor t Dense
from ke r a s . o p t im i z e r s impor t SGD
from systemml . m l l e a rn impor t Keras2DML
de f t r a i n (X , Y) :

num_elems , D = X . shape ; K = Y . shape [1]
epochs = num_i ter / num_elems
model = S e q u e n t i a l ()
model . add (Dense (K , a c t i v a t i o n ="softmax" , input_d im=D))
sgd = SGD(l r = 0 . 0 1 , momentum=0 , n e s t e r o v = F a l s e)
model . compi l e (l o s s ="categorical_crossentropy" , o p t im i z e r ="sgd")
sysml_model = Keras2DML (spark , model , i npu t_ shape =(D , 1 , 1))
sysml_model . s e t (t r a i n _ a l g o ="minibatch" , t e s t _ a l g o ="allreduce")
sysml_model . f i t (X , Y)

3 COMPILER AND RUNTIME SUPPORT
Tensor Representation. The primary data structure to store large
amounts of data in DML is a 2D Matrix whereas in typical DL appli-
cations, a multi-dimensional matrix or a tensor is commonly used.
To represent a tensor with more than 2 dimensions in DML, we lin-
earize all but the first dimension. Therefore, a 4-dimensional tensor
of shape [N ,C,H ,W] is represented as a matrix with N rows and
C ∗H ∗W columns. This simplification helps us to leverage existing
physical optimizations such as various sparse formats (COO, CSR
and Modified CSR), blocking for handling out-of-core tensors, and
broadcasting operations over scalars and vectors. Other optimiza-
tions such as sum-product optimization and code generation are
also leveraged when applicable.

Builtin NN Functions. SystemML provides a set of built-in
functions that are part of the language. Some common ones are min,
max, mean, sum, and solve. Even though convolution and pooling
(and their respective backward functions) can be expressed using
existing DML looping constructs (as they are in the NN library),
we’ve added them as built-in functions to enable efficient implemen-
tations. In addition to supporting ML use cases in SystemML, using
the aforementioned representation of tensors and built-in functions,
we support a variety of deep learning models in SystemML such
as LeNet, feedforward nets, ResNets, autoencoders, simple RNNs,
LSTMs, U-Net, SentenceCNN, etc.

Native BLAS Exploitation. To exploit the low-level CPU SIMD
instructions, we extended the SystemML runtime to use the underly-
ing BLAS (such as OpenBLAS and Intel MKL) for compute-intensive
operations such as matrix-matrix multiplication and convolution
operations. If Intel MKL is installed, the SystemML runtime uses the
highly-tuned MKL-DNN primitives for the convolution operations.

GPU Backend.Most of the time in training a deep neural net-
work is spent in matrix multiplications and convolution opera-
tions [13]. These operations can be performed, in case of dense
inputs or intermediates, extremely efficiently on a GPU which of-
ten leads to a speedup of 10x as compared to CPU. Hence, it became
imperative to support GPU backend in SystemML. To add a GPU
backend, the SystemML optimizer was modified to compile a GPU
low-level operator if the input data, intermediate data and output
data for a given operation fits in the GPU device memory. The GPU
backend invokes highly tuned kernels from CUDA libraries like
CuBLAS, CuSPARSE, or CuDNN when available. In other instances,

it invokes custom CUDA kernels packaged with SystemML. Data is
lazily copied back and forth between the GPU device memory and
the host memory as needed. Also, data is converted from row-major
to column-major and vice-versa when needed by CUDA library
operations. Data is evicted from the GPU memory using an LRU
strategy. It is copied back to the host memory if it was dirty when
evicted. Data on the host is spilled onto disk when appropriate.

Sparse Operations. SystemML maintains the number of non-
zeros for each intermediate matrix, decides upon dense or sparse
formats, and selects appropriate runtime operators for combina-
tions of dense and sparse inputs. For sparse-safe operations (such
as convolution and matrix multiplication), this reduces the number
of floating point operations and improves memory efficiency. For
example, there are four physical convolution operators (using low-
ering technique [5]), dense input / dense filter, sparse input / dense
filter, dense input / sparse filter and sparse input / sparse filter.

Distributed Operations. The Keras2DML and Caffe2DML APIs
allow the user to configure the execution strategy of the underly-
ing optimization algorithm with the parameters train_algo and
test_algo. For example, if train_algo is set to "minibatch",
the generated DML script contains a for loop that loops over the
dataset one batch at a time. If batch_size is small enough such
that the input, output and intermediate matrices fit in the driver
JVM, then SystemML will generate a single-node plan. If on the
other hand, the user sets batch_size to a very large value (for
example, train_algo set to "batch") or if the weights no longer
fit on the driver JVM, then SystemML will generate a distributed
data-parallel plan where the large input activations or weights
are partitioned into fixed size blocks and represented internally
as RDD [4]. For scoring using a compute-intensive deep network
such as ResNet-50 on a large dataset, it is often better to use the
task-parallel loop construct - parfor - with a small batch_size
instead of the for loop [3]. This script is generated automatically
by setting test_algo to "allreduce". The parfor optimizer then
automatically creates optimal parallel execution plans that exploits
multi-core, multi-gpu, and cluster parallelism based on the under-
lying cluster and data characteristics. As an example, the parfor
optimizer compiles a row-partitioned remote-parfor plan for the
ResNet-50 prediction script that avoids shuffling and scales linearly
with the number of cluster nodes over large data.

4 FUTUREWORK
We plan to extend the existing code generation framework in Sys-
temML for deep learning operations. This includes supporting ver-
tical fusion across layers, horizontal fusion for shared inputs (e.g.
reuse temporary im2col intermediates in presence of multiple con-
volution operators consuming the same input), and code generation
for heterogeneous hardware including GPUs. Asynchronous algo-
rithms such as HogWild! [16], and Stale-Synchronous SGD [11]
will be supported in SystemML through parameter server abstrac-
tions [1]. This will help in making SystemML a unified framework
for small- and large-scale machine learning that supports data-
parallel, task-parallel, and parameter-server-based execution strate-
gies in a single framework. We also plan to investigate the auto-
matic exploitation of the optimization tradeoff between hardware
efficiency and statistical efficiency [8].

2

REFERENCES
[1] SYSTEMML-2083 - Language and Runtime for Parameter Servers. https://issues.

apache.org/jira/browse/SYSTEMML-2083, 2018.
[2] Martín Abadi et al. TensorFlow: A System for Large-scale Machine Learning. In

OSDI, 2016.
[3] Matthias Boehm et al. Hybrid Parallelization Strategies for Large-scale Machine

Learning in SystemML. PVLDB, 7(7), 2014.
[4] Matthias Boehm et al. SystemML: Declarative Machine Learning on Spark.

PVLDB, 9(13), 2016.
[5] Sharan Chetlur et al. cuDNN: Efficient Primitives for Deep Learning. CoRR, 2014.
[6] Minsik Cho et al. PowerAI DDL. CoRR, 2017.
[7] François Chollet et al. Keras. https://github.com/fchollet/keras, 2015.
[8] Christopher De Sa, Matthew Feldman, Christopher Ré, and Kunle Olukotun.

Understanding and Optimizing Asynchronous Low-Precision Stochastic Gradient
Descent. SIGARCH, 45, 2017.

[9] Jeff Dean et al. MapReduce: Simplified Data Processing on Large Clusters. In
OSDI, 2004.

[10] Kaiming He et al. Deep Residual Learning for Image Recognition. CoRR, 2015.
[11] Qirong Ho et al. More Effective Distributed ML via a Stale Synchronous Parallel

Parameter Server. In NIPS, 2013.
[12] Sergey Ioffe et al. Batch Normalization: Accelerating Deep Network Training by

Reducing Internal Covariate Shift. CoRR, 2015.
[13] Yangqing Jia. Learning Semantic Image Representations at a Large Scale. PhD

thesis, EECS Department, University of California, Berkeley, May 2014.
[14] Yangqing Jia et al. Caffe: Convolutional Architecture for Fast Feature Embedding.

CoRR, 2014.
[15] Yann LeCun et al. Deep Learning. Nature, 521, 2015.
[16] Benjamin Recht et al. Hogwild: A Lock-Free Approach to Parallelizing Stochastic

Gradient Descent. In NIPS. 2011.
[17] Nitish Srivastava et al. Dropout: A Simple Way to Prevent Neural Networks from

Overfitting. JMLR, 2014.
[18] Matei Zaharia et al. Spark: Cluster Computing with Working Sets. HotCloud,

2010.

3

https://issues.apache.org/jira/browse/SYSTEMML-2083
https://issues.apache.org/jira/browse/SYSTEMML-2083
https://github.com/fchollet/keras

	1 Introduction
	2 Deep Learning APIs
	3 Compiler and Runtime Support
	4 Future Work
	References

