
PipeDream: Pipeline Parallelism for DNN Training
Extended Abstract

Aaron Harlap§, Deepak Narayanan†, Amar Phanishayee⋆,
Vivek Seshadri⋆, Gregory R. Ganger§, Phillip B. Gibbons§

⋆Microsoft Research §Carnegie Mellon University †Stanford University

1 INTRODUCTION
The last five years has seen a rapid increase in the use of DeepNeural
Networks (DNNs),with researchers and practitioners applying these
models to great effect across a wide range of applications, such as
image and video classification, speech recognition, and language
translation [4, 5, 8, 9, 12]. As DNNs have become more widely de-
veloped and used, model sizes have continued to grow – models
today have tens to hundreds of layers totalling 10–20 million param-
eters. Such growth not only stresses the already time- and resource-
intensive DNN training processes, but also causes the commonly
used parallelization approaches to break down.

The most common approach to training DNNs in parallel is data
parallelism, where the DNN model is replicated on multiple ma-
chines,with each replica training independently on a different subset
of the training dataset. The weight updates computed on individual
workers are then aggregated to get a final weight update that reflects
updates across all inputs; the amount of data communicated after
each aggregation is proportional to the size of the model. While
data parallel training works well with some popular models [1, 3],
expected growth in DNNmodel sizes increases the overhead of com-
munication. Indeed, somewidely-usedmodels are large enough that
the communication overheads dominate (e.g., up to 85% of training
time for VGG-16 [11]) and limit scaling.

Another approach to parallelization involves splitting a single
model among the different machines; this approach is used when
the full model is too large to fit on a single machine. In this “model
parallel” regime, each machine is responsible for a subset of the
model’s parameters, and performs weight updates on this partition
alone. In addition, only inter-layer values (activations and gradients)
are communicated synchronously among the different machines,
often leading to significantly less communication overhead (e.g., up
to 95%). However, as shown in Figure 1, standard model parallelism
leads to severe under-utilization of compute resources. Furthermore,
it is often not clear how to split a model among the different ma-
chines for optimal performance. To solve this problem, we propose
pipeline parallelism, an enhancement to model-parallelism, where
multiple mini-batches are injected into the system at once to ensure
efficient and concurrent use of compute resources; communication
overheads are hidden as they overlap with computation.

Our system,PipeDream, supportspipelined training, andautomat-
ically determines how to systematically split a given model across
the available compute nodes. Experiments confirm PipeDream’s
effectiveness for large models. For example, when using 4 machines
to train the>100millionparameterVGG16[11]onthe ImageNet1K[10]

SysML’18, February 2018, Stanford, California USA
2018. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Startup State Steady State

Machine 1

Machine 2

Machine 3

1

1

1 1

1

1

5

5

5

Machine 4 1 1 5 5

2

2

2

2

3

3

3

3

4

4

4

42

2

2

2

3

3

3

36 7

6

6

4

4

4

5

6 7

7

84 5

5

6

6

7

8

Machine 1

Machine 2

Machine 3

1

1

1 1

1

1 2

2

Machine 4 1 1 2 2

2

2

2

2

Time

Backward WorkForward Work Idle

Figure 1: Example pipelines with 4 machines, with (bottom) and
without (top) pipelining enabled. The timeline with pipelining
enabled shows startup and steady states. Numbers indicate ID of
mini-batch being processed. This simplified example assumes that
the forward and backward pass in every stage takes exactly one time
unit (represented by a box), and that there are no communication de-
lays. A singlemodel’s computation is split amongst the 4machines.

dataset, PipeDream converges 2.5× faster than using a single ma-
chine and 3× faster than data parallel training; the massive commu-
nication overheads make data parallel slower with 4 machines than
using just a single machine. For the much smaller Inception-BN [7]
network, PipeDream performs nearly identically to data parallelism,
confirming that the pipeline parallel approach does not hurt even
when communication is not the bottleneck.

2 OURAPPROACH: PIPELINING
Pipeline parallelism (PP) aims to avoid the synchronization bottle-
neck in data-parallel training (BSP). Our approach is inspired by
pipelining in computer architecture, where execution units are or-
ganized into stages, and multiple instructions are in flight at a time.

Overview. PipeDream automates the process of partitioning the
DNN layers among the different machines by profiling the per-layer
compute times and inter-layer bandwidths for the entiremodel.With
this information, PipeDreampicks roughly even splits thatminimize
communication between compute nodes while balancing compute
load across them, using a Dynamic Program to solve the optimiza-
tion problem. Each split of the DNN is referred to as a stage. Each
stage is mapped to a separate GPU, that performs the forward and
backward pass for all the layers that are part of the stage. We refer
to the stage that contains the input layer as the input stage, and the
one that contains the output layer as the output stage. In the forward
phase, each stage performs the forward pass for each of the layers in
that stage. In the backward phase, each stage performs the backward
pass for each of the layers in that stage.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

SysML’18, February 2018, Stanford, California USA Harlap et al.

Input DNN

PipeDream’s distributed runtime
executes generated plan

PipeDream Profiler

PipeDream Optimizer# of
machines

profiled
by

CD
F

layer id
CDF Profiles of Layer
Compute Times &
Output Sizes

layer id

CD
F

Figure 2: PipeDream’s automated mechanism to partition DNN
layers into stages. PipeDream first profiles the input DNN to get
estimates for each layer’s compute time and output size. Using these
estimates, PipeDream’s optimizer partitions theDNN’s layers across
the availablemachines.

To ensure that no GPU is idle at any point in time, we inject mul-
tiple mini-batches into the pipeline one after the other. After com-
pleting the forward pass for a mini-batch, each stage asynchronously
sends the output activations to the next stage, while simultaneously
starting to perform work for another mini-batch. Similarly, after
completing the backward pass for a mini-batch, each stage asyn-
chronously sends the output gradient to the previous stage, while
starting computation for another mini-batch. This ensures that dif-
ferent GPUs are processing different mini-batches at the same time
(Figure 1, bottom).

PipeDream’s pipeline is bi-directional (Figure 1, bottom), since
a layer’s forward and backward pass needs to be performed on the
same machine – this is different from instruction pipelines which
are generally uni-directional. PipeDream’s runtime needs to ensure
that all machines in the pipeline are utilized, while also ensuring that
both forward andbackwardpasses for different inputs are performed.
PipeDream also maintains multiple versions of the parameters at
each machine (one for each mini-batch in progress), since we em-
pirically observed that later layers seeing more updated parameters
than earlier layers cause the model to converge slower.

Advantages of PP over BSP. There are twomain reasons why PP is
better than BSP for training huge DNNmodels. For DNNswith large
models sizes, PP has far less communication overhead compared to
BSP. Instead of having to communicate all the parameters, as is done
in BSP, eachmachine in a PP execution only has to communicate the
outputdataofoneof the layers.This results in far less communication
(e.g.,>95%reduction forVGG16). Inaddition,PPoverlaps thecommu-
nication arising from each mini-batch with the computation for the
next, avoiding network stalls, leading to better hardware efficiency.

3 EVALUATION
This section shows that for large models, PipeDream provides a
3–4× improvement over a standard data parallel approach, while
significantly reducing communication (up to 95%).

Setup. We trained the VGG16 model on the ImageNet dataset, on
4 machines that have NVIDIA Titan X GPUs and 40 Gbps ethernet
interfaces. We present results for four different configurations: (1)
pipeline parallelism with four machines, (2) data parallelism with

0
0.2
0.4
0.6
0.8

1

0 10 20 30 40 50 60 70

To
p-

1
Ac

cu
ra

cy

Time (in hours)

1 Machine 4-DP-ASP
4-DP-BSP 4-Pipeline

Figure 3: Accuracy versus time for a VGG16model on the ImageNet
dataset, using amini-batch size of 32.
four machines using BSP synchronization, (3) data parallelism with
four machines using ASP [2, 6] synchronization, and (4) a single
machine. Each configuration, besides data-parallel ASP, was trained
for nine epochs. After the fifth and seventh epoch, we reduced the
learning rate by a magnitude of 10.We use a mini-batch size of 32 on
eachmachine for each configuration, which is the largestmini-batch
size that fits in GPUmemory for VGG16.

Results. Figure 3 shows top-1 validation accuracy vs. training time
for the four configurations. To evaluate performance, we compare
the time taken to reach a certain validation accuracy. Compared to
the single machine setup, pipeline-parallel achieves 50% validation
accuracy 2.5x time faster. Compared to the 4-machine data-parallel
withBSP setup, pipeline-parallel achieves 50%validation accuracy 3x
faster. 4-machinedata-parallelwithBSPsynchronizationruns slower
than a single machine, because of the large communication over-
heads (>2× computation time) associated with VGG’s large model
size. In order to reduce communication overhead in data-parallel
training, we experimented with running 4-machine data-parallel
with ASP synchronization. Unlike BSP, which synchronizes the pa-
rameter data after every mini-batch, ASP has no synchronization,
and theworkers use themost recent parameter data available. Due to
ASP’s poor statistical efficiency, pipeline parallel reaches a validation
accuracy of 30% 4.3x faster than ASP data-parallel; ASP does not
reach a validation accuracy of 50% after 35 epochs.

The single machine setup provides the best statistical efficiency,
improving over both 4-machine data-parallel BSP and 4-machine
pipeline-parallel. Both pipeline-parallel and data-parallel perform
parameter updates on stale parameters, leading to a decrease in
statistical efficiency. 4-machine data-parallel ASP has even worse
statistical efficiency, since parameter updates can be performed on
arbitrarily stale parameters. However, 4-machine data-parallel ASP
provides the best hardware efficiency as it doesn’t have any commu-
nication overhead, and also parallelizes processing across machines.
Pipeline-parallel does have some overhead due to a slight imbalance
in work distribution, but it is smaller than the communication over-
head in data-parallel BSP, leading to a 2.47x faster time-per-epoch.

In addition, we observed that the amount of communication each
machine performs in the pipelined setup is 0.7%–6.1% of the commu-
nication that each machine performs in a data-parallel setup.

4 FUTUREWORK
While PipeDream shows speedups for a small number of GPUs, it
does increase the memory footprint of training as it needs to main-
tain previous versions of the parameters. As future work, we are
exploring how to combine pipeline parallelismwith data parallelism
to support better scaling for a larger number of GPUs. We are also
exploring how to apply pipeline parallelism to RNNs, which tend to
scale poorly using existing data parallel approaches.

PipeDream: Pipeline Parallelism for DNN Training SysML’18, February 2018, Stanford, California USA

REFERENCES
[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat,

G. Irving, M. Isard, et al. Tensorflow: A system for large-scale machine learning.
InOSDI, volume 16, pages 265–283, 2016.

[2] T. M. Chilimbi, Y. Suzue, J. Apacible, and K. Kalyanaraman. Project adam: Building
an efficient and scalable deep learning training system. In OSDI, volume 14, pages
571–582, 2014.

[3] H. Cui, H. Zhang, G. R. Ganger, P. B. Gibbons, and E. P. Xing. Geeps: Scalable deep
learning on distributed gpus with a gpu-specialized parameter server. In Proceed-
ings of the Eleventh European Conference on Computer Systems, page 4. ACM, 2016.

[4] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.
CoRR, abs/1512.03385, 2015. URL http://arxiv.org/abs/1512.03385.

[5] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A. r. Mohamed, N. Jaitly, A. Senior,
V. Vanhoucke, P. Nguyen, T. N. Sainath, and B. Kingsbury. Deep neural networks
for acoustic modeling in speech recognition: The shared views of four research
groups. IEEE Signal Processing Magazine, 29(6):82–97, Nov 2012.

[6] Q. Ho, J. Cipar, H. Cui, S. Lee, J. K. Kim, P. B. Gibbons, G. A. Gibson, G. Ganger, and
E. P. Xing. More effective distributedml via a stale synchronous parallel parameter
server. InAdvances inneural informationprocessing systems, pages 1223–1231, 2013.

[7] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In International Conference on Machine
Learning, pages 448–456, 2015.

[8] N. Kalchbrenner, E. Grefenstette, and P. Blunsom. A convolutional neu-
ral network for modelling sentences. CoRR, abs/1404.2188, 2014. URL
http://arxiv.org/abs/1404.2188.

[9] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-Fei.
Large-scale video classification with convolutional neural networks. In 2014 IEEE
Conference onComputerVision andPatternRecognition, pages 1725–1732, June 2014.

[10] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S.Ma, Z. Huang, A. Karpathy,
A. Khosla, M. Bernstein, et al. Imagenet large scale visual recognition challenge.
International Journal of Computer Vision, 115(3):211–252, 2015.

[11] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

[12] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan. Show and tell: A neural image
caption generator. CoRR, abs/1411.4555, 2014. URL http://arxiv.org/abs/1411.4555.

http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1404.2188
http://arxiv.org/abs/1411.4555

	1 Introduction
	2 Our Approach: Pipelining
	3 Evaluation
	4 Future Work
	References

