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ABSTRACT
The collection of increasingly high volume data from heterogeneous
sources motivates the use of data sketches with very low storage
and update overhead. To address these needs, we draw a connection
between sketching and statistical moments to develop an efficient
and mergeable sketch for approximate quantile queries, referred to
as the moments sketch. The moments sketch operates with a small
memory footprint (< 200 bytes) and computationally efficient (< 30
ns) merges and updates by tracking only the summary statistics of a
data stream.We can then efficiently recover quantile estimates from
the sketch by applying the method of moments and the maximum
entropy principle. This allows the moments sketch to match the
accuracy of alternative sketches while operating with much less
storage and runtime overhead. Efficient maximum entropy solvers
and fast merge times then enable significant end to end speedups
in large-scale analytics.

1 INTRODUCTION
The tremendous growth of log data from sources such as mobile
phones, sensors, and datacenters makes it possible to monitor com-
plex application deployments at a per-device and per-minute resolu-
tion. Engineers rely on being able to estimate the latency quantiles
(i.e. p99) for hundreds of thousands of device-type and app-version
combinations over weeks and months [11]. These quantiles are then
used to power both real-time dashboards as well as downstream
classification and feature selection queries.

However, the volume of data in modern deployments makes it
difficult to compute quantiles over fine-grained subpopulations at
interactive speeds. Given billions of log events, selection or sorting
on raw values is expensive. Alternatively,mergeable summaries pro-
vide compact synposes of data that can be combined without loss of
accuracy [2, 10]. Simple mergeable summaries can include samples
or histograms, and they are used in data aggregation engines such
as Druid and Spark [5, 9, 27] to calculate quantiles without keeping
raw data in memory, to distribute work across nodes, and to pre-
aggregate data by materializing summaries at ingest time. However,
the memory overheads and merge times of existing sketches still
become prohibitive when many sketches must be aggregated.

To illustrate these system requirements, we describe our experi-
ence working with a large industrial data stream which deploys the
MacroBase feature selection engine [6] on top of a system very sim-
ilar to Druid [27]. In this deployment, real time telemetry metrics
arrive at a rate of billions of events per day. As they arrive, the Druid-
like engine groups them by dimensions such as application version,
OS version, and hardware model, and pre-aggregates them into
five-minute windows, maintaining a summary for each sub-group.
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The engine calculates quantiles for specific time-ranges and dimen-
sions by merging the appropriate summaries. Even so, telemetry
deployments can have hundreds of thousands of dimension com-
binations, so calculating a quantile over a 2-week range requires
loading and merging half a billion summaries. We have found ex-
isting summaries generally operate with either microsecond-level
merge times or kilobyte-level space overheads, leading to multiple
minute query times and terabyte-level memory usage.

The above scenarios motivate quantile summaries that are:
• Compact, to limit network and memory overhead,

• Mergeable [2], so sketches can be aggregated, and

• Fast, to enable interactive latencies on large datasets.
To address these requirements we draw a connection between
mergeable sketches and the statistical method-of-moments [26].
We propose a simple data summary, referred to as the Moments
Sketch (M-sketch), which tracks summary statistics such as mean,
higher moments, and min and max. Using the method of moments
we can construct a maximum entropy distribution that matches the
moments in an M-sketch, and provide empirically accurate quantile
estimates. This data structure is easily mergeable, and we find that
the M-sketch can achieve the same accuracy with less memory and
orders of magnitude faster merge and update times compared with
existing sketches.

In summary, we identify and evaluate the use of higher moments
for fast, compact, and mergeable quantile sketches, and we develop
efficient methods for estimating quantiles from moments.

2 METHODS
An order-k M-sketch consists of k + 3 double-precision floating
point numbers summarizing a dataset X = {x : x ∈ R}: the min,
max, count, and the first k moments. The k-th moment (denoted
mk ) of a given dataset X is the summary statistic given bymk =
1
|X |

∑
x ∈X xk . The first moment is the mean, the second moment

determines the standard deviation, and higher moments describe a
distribution’s skew and kurtosis. Note that these are the moments
of the empirical distribution, not those of the unknown underlying
distribution. In practice we extend the M-sketch to track other
statistics such as the log-moments 1

|X |

∑
x ∈X (logx)k to support

heavy-tailed distributions, though we omit this extension in this
abstract due to space constraints. Merge and update operations
on an M-sketch operate over the components independently and
consist of a handful of floating point operations per component.

To query an M-sketch, we must first estimate the underlying dis-
tribution from its moments. The method of moments allows us to es-
timate distribution parameters from observedmoments [4, 7, 16, 26].
However, in general, the first k moments are insufficient to uniquely
determine an arbitrary distribution [3], so we use the maximum-
entropy principle [15] to select a single distribution estimate from
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the space of possible distributions. Specifically, a maximum entropy
distribution with pdf f is a distribution with maximal differential
entropy H = −

∫
X ⊂R

f (x) log f (x)dx under certain constraints –
in this case observed moments. Maximizing entropy is a means
of “making inferences on the basis of partial information” while
minimizing the bias of unfounded assumptions [15], and provides
useful estimates in a variety of domains [21, 22]. In the case of quan-
tile estimation, this principle is particularly applicable to smooth,
continuous datasets without unusual gaps and spikes. Thus though
M-sketch provides a small amount of robustness to outliers, perfor-
mance degrades when working with large anomalous values.

The M-sketch tracks a finite set of moments, so we can use func-
tional optimization to show that a maximum entropy distribution
with these moments must be of the form f (x) = exp

(∑k
i=0 λix

i
)
.

Then, we can use Newton’s method to solve for the parameters
λi such that

∫
f (x)x i dx = mi , as described in [20]. To improve

the convergence of Newton’s method, we express the polynomial∑
λix

i as a sum of Chebyshev polynomials [23]. Since these poly-
nomials form an orthogonal basis, small changes in f (x) map more
directly to small changes in the coefficients, and they yield better-
conditioned Hessians [25]. LettingTi (x) denote the i-th Chebyshev
polynomial of the first kind, the maximum entropy distribution we
seek then has the form f (x) = exp

(∑k
i=0 ciTi (x)

)
. We solve for ci

by minimizing the potential P(®c) =
∫
f (x)dx −

∑k
i=0 ci µ

c
i where

µci are the Chebyshev data moments µci =
1
|X |

∑
x ∈X Ti (x).

This potential is convex so we minimize it using Newton’s
method with backtracking [8]. As part of Newton’s method, we
compute ∇P and ∇2P efficiently with a modification of Clenshaw-
Curtis integration [23]. In our evaluation datasets, for k ≤ 10 our
implementation converges in less than 20 Newton steps. Given
f (x), we can finally calculate quantiles using numeric integration.

Accuracy Bounds. Given a ϕ-quantile estimate q̂ϕ , its quantile
error ϵ ∈ [0, 1] is |ϕ − F−1(q̂ϕ )| where F−1 is the inverse cdf. Along
with a quantile estimate, the M-sketch provides a worst case upper
bound on the error ϵ of its estimate q̂p using the techniques in [3, 19,
24]. These bounds are analogous to stronger versions of the Markov
and Chebyshev inequalities. Though they are useful, they are orders
of magnitude more conservative (≈ O(1/k) for k moments [17])
than the observed error for the relatively high-entropy distributions
we observe in practice.

3 EVALUATION
To compare the accuracy and merge times of the M-sketch across
a variety of sketch sizes, we obtained 81 million log-scale inter-
net traffic measurements from the Milan telecom dataset [14] for
November 2013, divided them into subsets of 100 points each, and
pre-aggregated sketches on each subset. Then, to replicate the ag-
gregation workflows discussed earlier, we merge all of the sketches
and estimate quantiles over the merged sketch, measuring the av-
erage quantile error ϵ for 21 equally spaced quantiles between 0.01
and 0.99.

We measured performance on an Intel(R) Xeon(R) CPU E5-2690
v4 @ 2.60GHz processor with 1TB of RAM. We obtained timings
for a single merge by dividing the total merge time by the num-
ber of sketches merged, averaged across 10 runs. The M-sketch is
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Figure 1: The M-sketch achieves sub-1% error with fast
merges and low space usage.

implemented in Java, and we compare against a Java equi-width his-
togram (EW-Histogram), the Greenwald-Khanna (GK) sketch [13]
as implemented in Spark-SQL [5], the T-Digest sketch [12], reser-
voir sampling, and the low-discrepancymergeable sketch (Merge12)
from [2], both implemented in the Yahoo! datasketches library [1].

Figure 1 compares the merge time (per sketch) and accuracy of
the M-sketch with other summaries. Since each sketch is param-
eterized by its size, we instantiate each sketch at a range of sizes.
The M-sketch has faster merge times and smaller space usage than
other sketches that achieve the same ϵ error. Going back to the
scenario in the Introduction, for quantile queries over a half-billion
summaries on a single node an order 8 M-sketch would take 30ns *
0.5 bln = 15 seconds to merge, and up to an additional 5ms to solve,
yielding much faster total times than sketches with microsecond
merge times.

The GK sketch is not fully mergeable and suffers accuracy loss
on every merge, which is why its error does not go to 0 even as
it is given more space. We observe that histograms and the M-
sketch both provide the fast merge times required for scalable
analytics. However, equi-width histograms perform very poorly in
the presence of even a single large outlier. In separate evaluations,
we have observed that an M-sketch with 10 moments consistently
achieves ϵ ≈ .01 accuracy on a variety of real-valued datasets
including the HEPMASS and Occupancy dataset from UCI [18] and
synthetic Gaussian datasets an outlier at x = 20σ .

4 DISCUSSION AND FUTUREWORK
Interactive analytics are increasingly bottlenecked on their ability
to aggregate large volumes of data. The moments sketch provides
one approach to achieving high performance merge times and low
storage sizes when estimating distributions, allowing interactive
modeling on multi-faceted populations.

The cost of solving for quantiles from moments can be fur-
ther reduced by using a cascade of cheaper bounds to prune sub-
populations as part of threshold or top-k queries, for example in
queries for the set device types with the top p99 latencies. The cost
of storing the M-sketch can also be reduced using low-precision
floating point. Looking forward, we hope to apply our techniques
directly to downstream modeling tasks that depend on distribution
estimation, including regression and classification.
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