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ABSTRACT
In large-scale classification, classes that are frequently confused
for each other usually exhibit high similarity on the sample level.
The similarities define coarse-to-fine hierarchical structure over
the classes. We developed a visual analytics system to reveal this
structure and analyze how it emerges during the training of deep
networks. We found that the network can perform coarse classi-
fication into few wide groups of classes early during the training,
with subsequent epochs improving the separability between finer
groups. Accordingly, we found that the features developed at early
layers are capable of performing coarse classification, while the
features developed at deeper layers specializing at separating finer
groups. We extend the AlexNet network to enforce this behavior
on the ImageNet ILSVRC dataset. In particular, we introduce an
additional loss function at selected layers that explicitly requires
its features to classify the input into class groups that we identified
as separable at this level. This enables faster convergence and a
reduction of the Top-1 error on ImageNet by more than 20% and
of the Top-5 error by more than 30%.

1 INTRODUCTION
Significant work has been done to understand the behavior of Con-
volutional Neural Networks (CNNs). Most work has focused on
visualizing image features learned by the network by means of
perturbation [27, 29], deconvolution [3, 21, 22, 27], code inversion
[6, 11, 12], and activation maximization [16, 21, 26]. The produced
visualizations were shown helpful in identifying biases in the train-
ing data such as dumbbell images always containing arms [14].
They also help in choosing filter parameters [27] and in estimating
redundancies among the filters [10, 28]. Feature visualization, how-
ever, does not provide holistic view of CNN behavior. Bau et al. [4]
present methods to quantify the e alignment between individual
hidden units and a set of visual semantic concepts. Projection offers
alternative means to analyze CNN-internal data and was shown
useful in inspecting the development of class separability during
training [17] and in identifying data quality issues [18].

Little focus has been given to visualizing and understanding the
classification error itself. Line graphs are typically used to moni-
tor the error during training and to compare multiple classifiers.
Histograms have been used to correlate the error with prediction
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Figure 1: A screenshot of Blocks [2] showing classification
results of ImageNet ILSVRC training set using AlexNet. The
central view shows the confusion matrix of the ILSVRC
classes, ordered by the WordNet concept hierarchy depicted
to the left. Interaction enables inspecting selected samples
such as ones whose classes are invertebrate (check the video
demonstration at https://vimeo.com/228263798 for further
views and interactions).

scores [1, 8, 19]. Confusion matrices provide more details about
the error by showing which classes are confused for each other.
When visualized properly [2], these matrices can reveal very useful
information about the error structure, as we explain next.

2 THE ERROR STRUCTURE IN
LARGE-SCALE CLASSIFICATION

To demonstrate patterns that can be found in a large confusion
matrix, we classify the ImageNet ILSVRC [20] training set using
pre-trained AlexNet [9]. Fig. 1 depicts the resulting confusion ma-
trix visualized using Blocks [2], a system we developed to inspect
CNNs. The matrix represents confusions between 1000 object cate-
gories and is ordered according to the WordNet concept hierarchy
[13]. This reveals a nested block pattern along the diagonal. The
first-level blocks are highlighted in red and represent three broad
class groups: organisms, artifacts, and food. The majority of class
confusions occur within these groups, while fewer confusions hap-
pen between these groups. Within each blocks, sub-blocks are visi-
ble that, in turns, capture the majority of confusions. This entails a
hierarchical structure of the error which reflects the hierarchical
similarity structure between visual object categories [5].

https://vimeo.com/228263798
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Hinton et al. [7] noted that using such similarity structures as
priors can potentially help in designing better classifiers. Blocks is
designed to expose these structures in classification error and to
perform detailed analysis of how they emerge during the training
CNNs1. In particular, Blocks enables inspecting the following two
aspects about these structures:

∙ Evolution of group separability during training: By in-
specting the confusion matrix at successive training epochs,
we observe that the three high-level groups emerge early in
the training. This means that the CNN first learns to separate
these groups based on low-level features such as straight
edges and patterned texture. These features were found
to emerge quickly when training CNNs [27]. Subsequent
epochs increasingly improve the separability of subgroups
as they require more specialized features.

∙ Group separability at different layers: It is possible to
test the separation power of a specific layer in a CNN by
training a linear classifier to separate the classes based on
the features developed at that layer. Inspecting the resulting
confusion matrix reveals which groups can be separated
using these features. We notice that features developed at
early layers can separate between high level groups, while
deeper layers can separate increasingly finer groups.

Next we demonstrate how these insights enable us to improve
classification performance of a baseline image classifier.

3 DESIGNING A HIERARCHY-AWARE CNN
In the previous section, we established that successive CNN layers
try to separate increasingly finer groups. We enforce this behavior
by introducing additional loss functions to the CNN.

We demonstrate this idea by extending the AlexNet reference ar-
chitecture [9]. Each loss function is associated with a specific layer
and performs coarse classification into a number of groups (Fig. 2).
At each layer, we select groups that we found most separable using
its features. As a result, each loss function constitutes a network
branch whose input is the corresponding layer’s output. During
training this branch back-propagates the group-level classification
error resulting in additional gradient to the corresponding layer.

We re-train the adapted network on the ILSVRC training dataset
for 50 epochs and measure the performance on the validation set.
This enabled us to cut down the Top-1 error by mroe than 20%
and the Top-5 error by mroe than 30%, bringing the performance
of AlexNet up to the level of GoogLeNet [23].

The additional loss functions serve as regularizers that require
the network to correctly classify each sample at multiple levels of
granularity. They alleviate overfitting as the network has to recog-
nize a bear as a mammal as well, which forces it to use generalizable
features and alleviate dependence on background features such as
snow. They further accelerate the training as the loss functions
incur multiple updates in each iteration.

Other approaches exist to incorporate hierarchy information in
CNNs [15, 24, 25]. While these approaches extract this information
automatically, they report smaller overall improvement compared
with our experiment, which demonstrates the value of closely
examining the class hierarchy at different epochs and layers.
1A video demonstration of Blocks is available at https://vimeo.com/228263798

Figure 2: The adapted AlexNet with branches that impose
the class hierarchy. Each branch takes the output of a spe-
cific layer and performs coarse classification into a number
of groups that exhibited good separability in our analysis.

Figure 3: Interactive filtering to reveal issues in the choice
of ImageNet ILSVRC classes [2].

4 DISCUSSION
Blocks is based on the observation that the hierarchical similarity
structures between the classes strongly impact the behavior of
large-scale classifiers. It relies on interactive visualization of the
confusion matrix to analyze these structures at different stages dur-
ing the training, and at different layers in case of neural networks.
Reordering the matrix is essential to reveal a block pattern that
corresponds to latent or explicit class hierarchy. Furthermore, users
can filter this matrix according to different criteria and select cer-
tain areas of confusion with the mouse to inspect the corresponding
image samples. This was shown very helpful in identifying various
quality issues in the training data (Fig. 3).

CONCLUSION
Understanding the error structure and monitoring how it evolves
during training help in introducing informed improvements to
deep networks such as loss functions of varying granularity. Visual
Analytics offers targeted solutions to inspect the training data and
the error structure, understand how the input is processed by the
model, and explore possible solutions to mitigate the error.

https://vimeo.com/228263798
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