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ABSTRACT
Classical anomaly detection is principally concerned with point-
based anomalies, anomalies that occur at a single data point. In this
paper, we present a new mathematical model to express range-based
anomalies, anomalies that occur over a range (or period) of time.

1 INTRODUCTION
Anomaly detection (AD) seeks to identify atypical events. Anomalies
tend to be domain or problem specific, and many occur over a period
of time. We refer to such events as range-based anomalies, as they
occur over a range (or period) of time1. Therefore, it is critical that
the accuracy measures for anomalies, and the systems detecting
them, capture events that occur over a range of time. Unfortunately,
classical metrics for anomaly detection were designed to handle only
fixed-point anomalies [1]. An AD algorithm behaves much like a
pattern recognition and binary classification algorithm: it recognizes
certain patterns in its input and classifies them as either normal
or anomalous. For this class of algorithms, Recall and Precision
are widely used for evaluating the accuracy of the result. They are
formally defined as in Equations 1 and 2, where TP denotes true
positives, FP denotes false positives, and FN denotes false negatives.

Recall = T P ÷ (T P + FN ) (1)

Precision = T P ÷ (T P + F P ) (2)

While useful for point-based anomalies, classical recall and preci-
sion suffer from their inability to capture, and bias, classification
correctness for domain-specific time-series anomalies. Because of
this, many time-series AD systems’ accuracy are being misrepre-
sented, as point-based recall and precision are used to measure
their effectiveness [9]. Furthermore, the need to accurately identify
time-series anomalies is growing due to the explosion of streaming
and real-time systems [2, 4, 7, 8, 10]. To address this, we redefine
recall and precision to encompass range-based anomalies. Unlike
prior work [2, 6], our mathematical definitions are a superset of the
classical definitions, enabling our system to subsume point-based
anomalies. Moreover, our system is broadly generalizable, providing
specialization functions to control a domain’s bias along a multi-
dimensional axis that is necessary to accommodate the needs of
specific domains.

In this short paper, we present novel formal definitions of recall
and precision for range-based anomaly detection that both subsume
those formerly defined for point-based anomaly detection as well as
being customizable to a rich set of application domains. Empirical
data has been omitted to meet the venue’s compressed format.

*The work was done while a Brown student.
1Range-based anomalies are a specific type of collective anomalies [3]. Moreover,
range-based anomalies are similar, but not identical, to sequence anomalies [11].
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Table 1: Notation

Notation Description
R set of real anomaly ranges
Ri the ith real anomaly range
P set of predicted anomaly ranges
Pj the jth predicted anomaly range
Nr number of real anomaly ranges
Np number of predicted anomaly ranges
α relative weight of existence reward
β relative weight of overlap reward
γ () overlap cardinality function
ω() overlap size function
δ () positional bias function

2 RANGE-BASED RECALL
Classical Recall rewards an AD system when anomalies are suc-
cessfully identified (i.e., TP) and penalizes it when they are not (i.e.,
FN). It is computed by counting the number of anomalous points
successfully predicted and then dividing that number by the total
number of anomalous points. However, it is not sensitive to domains
where a single anomaly can be represented as a range of contiguous
points. In this section, we propose a new way to compute recall for
such range-based anomalies. Table 1 summarizes our notation.

Given a set of real anomaly ranges R = {R1, ..,RNr } and a set
of predicted anomaly ranges P = {P1, .., PNp }, our RecallT (R, P)
formulation iterates over the set of all real anomaly ranges (R),
computing a recall score for each real anomaly range (Ri ∈ R) and
adding them up into a total recall score. This total score is then
divided by the total number of real anomalies (Nr ) to obtain an
average recall score for the whole time-series.

RecallT (R, P ) =
∑Nr
i=1 RecallT (Ri , P )

Nr
(3)

When computing the recall score RecallT (Ri , P) for a single real
anomaly range Ri , we take the following aspects into account:
• Existence: Identifying an anomaly (even by a single point in
Ri ) may be valuable in some application domains.
• Size: The larger the size of the correctly predicted portion of
Ri , the higher the recall score will likely be.
• Position: In some cases, not only size, but also the relative

position of the correctly predicted portion of Ri may be im-
portant to the application (e.g., early and late biases).
• Cardinality: Detecting Ri with a single predicted anomaly

range Pj ∈ P may be more valuable to an application than
doing so with multiple different ranges in P .

We capture these aspects as a sum of two reward terms weighted
by α and β , respectively, where 0 ≤ α , β ≤ 1 and α + β = 1. α
represents the relative importance of rewarding existence, whereas β
represents the relative importance of rewarding size, position, and
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function ω(AnomalyRange, OverlapSet, δ )
MyValue← 0
MaxValue← 0
AnomalyLength← length(AnomalyRange)
for i← 1, AnomalyLength do

Bias← δ (i, AnomalyLength)
MaxValue← MaxValue + Bias
if AnomalyRange[i] in OverlapSet then

MyValue← MyValue + Bias
return MyValue/MaxValue

(a) Overlap Size

// Flat positional bias
function δ (i, AnomalyLength)

return 1

// Front-end positional bias
function δ (i, AnomalyLength)

return AnomalyLength - i + 1

// Tail-end positional bias
function δ (i, AnomalyLength)

return i
(b) Positional Bias

Figure 1: Example Functions for ω() and δ ()

cardinality, which all stem from the overlap between Ri and the set
of all predicted anomaly ranges (Pi ∈ P).

RecallT (Ri , P ) = α × ExistenceReward (Ri , P )
+ β ×OverlapReward (Ri , P ) (4)

If anomaly range Ri is identified (i.e., |Ri ∩ Pj | ≥ 1 across all
Pj ∈ P), then an existence reward of 1 is earned.

ExistenceReward (Ri , P ) =
{
1 , if

∑Np
j=1 |Ri ∩ Pj | ≥ 1

0 , otherwise
(5)

Additionally, an overlap reward, dependent upon three application-
defined functions 0 ≤ γ () ≤ 1, 0 ≤ ω() ≤ 1, and δ () ≥ 1, can be
earned. These functions capture the cardinality (γ ), size (ω), and
position (δ ) of the overlap. The cardinality term serves as a scaling
factor for the rewards earned from size and position of the overlap.

OverlapReward (Ri , P ) = CardinalityFactor (Ri , P )

×
Np∑
j=1

ω(Ri , Ri ∩ Pj , δ ) (6)

The cardinality factor is largest (i.e., 1), when Ri overlaps with at
most one predicted anomaly range (i.e., it is identified by a single
prediction range). Otherwise, it receives a value 0 ≤ γ () ≤ 1 defined
by the application.

CardinalityFactor (Ri , P ) =


1 , if Ri overlaps with

at most one Pj ∈
P

γ (Ri , P ) , otherwise

(7)

The RecallT constants (α and β) and functions (γ (), ω(), and δ ()) are
tunable according to the needs of the application. Next, we illustrate
how they can be customized with examples.

The cardinality factor should generally be inversely proportional
to Card(Ri ), i.e., the number of distinct prediction ranges that a real
anomaly range Ri overlaps. For example, γ (Ri , P) can simply be set
to 1/Card(Ri ).

Figure 1a provides an example for theω() function for size, which
can be used with many different δ () functions for positional bias
as shown in Figure 1b. If all index positions are equally important,
then the flat bias function should be used. If earlier ones are more
important than later ones (e.g., early cancer detection [5], real-time
apps [2]), then the front-end bias function should be used. Finally, if
later index positions are more important (e.g., delayed response in
robotic defense), then the tail-end bias function should be used.

Our recall formula for range-based anomalies subsumes the clas-
sical one for point-based anomalies (i.e., RecallT ≡ Recall) when:

(i) all Ri ∈ R and Pj ∈ P are represented as single-point ranges
(e.g., range [1, 3] represented as [1, 1], [2, 2], [3, 3]), and

(ii) α = 0, β = 1,γ () = 1, ω() is as in Figure 1a, and δ () returns
flat positional bias as in Figure 1b.

3 RANGE-BASED PRECISION
Classical Precision is computed by counting the number of success-
ful prediction points (i.e., TP) in proportion to the total number of
prediction points (i.e., TP+FP). The key difference between Pre-
cision and Recall is that Precision penalizes FPs. In this section,
we extend classical precision to handle range-based anomalies. Our
formulation follows a similar structure as RecallT .

Given a set of real anomaly ranges R = {R1, ..,RNr } and a set
of predicted anomaly ranges P = {P1, .., PNp }, PrecisionT (R, P)
iterates over the set of predicted anomaly ranges (P), computing a
precision score for each range (Pi ∈ P) and then sums them. This
sum is then divided by the total number of predicted anomalies (Np ),
averaging the score for the whole time-series.

PrecisionT (R, P ) =
∑Np
i=1 PrecisionT (R, Pi )

Np
(8)

When computing PrecisionT (R, Pi ) for a single predicted anomaly
range Pi , there is no need for an existence reward, because precision
by definition emphasizes prediction quality, and existence by itself
is too low a bar for judging the quality of a prediction. This removes
the need for α and β constants. Therefore:

PrecisionT (R, Pi ) = CardinalityFactor (Pi , R)

×
Nr∑
j=1

ω(Pi , Pi ∩ Rj , δ ) (9)

γ (),ω(), and δ () are customizable as before. Furthermore, PrecisionT
≡ Precision under the same settings as in Section 2 (except α and β
are not needed). Note that, while δ () provides a potential knob for
positional bias, we believe that in many domains a flat bias func-
tion will suffice for PrecisionT , as an FP is typically considered
uniformly bad wherever it appears in a prediction range.

4 CONCLUSION
In this paper, we note that traditional recall and precision were
invented for point-based analysis. In range-based anomaly detection,
anomalies are not necessarily single points, but are, in many cases,
ranges. In response, we offered new recall and precision definitions
that take ranges into account.
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