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ABSTRACT

Convolutional Neural Networks (CNN) have achieved super human
accuracies in numerous machine learning tasks. Increasing model
sizes have made them highly resource intensive and power hun-
gry, making them unfit for embedded platforms such as wearables,
hand-held devices, drones, autonomous robots etc. To address these
limitations, we introduce a) A novel pruning scheme, k/m Sparsity,
which enforces structured constraints among elements of weight
tensors. b) An accelerator architecture called SparseCore, that
achieves high energy efficiency and lowers the resource footprint
by effectively exploiting k/m sparsity in weights and activations.
On ILSVRC2012 dataset, k/m pruning scheme results in 50% to 75%
sparsity without loss of accuracy. Our experiments show that Spar-
seCore can achieve close to 90% ALU utilization, improving both
performance and energy efficiency by 3.1x and 2.5x respectively,
compared to dense CNN inference.

1 INTRODUCTION

Convolutional Neural Networks have emerged as the foundation for
applications such as speech recognition[3], image recognition[6],
NLP[2] and ADAS([7]. Their ability to generalize and achieve greater
accuracy comes at the cost of increased model complexity. While
Graphics Processing Units (GPUs) are widely used to accelerate
CNN s for datacenter training and inference, cost and power re-
quirements for such systems make them prohibitively expensive
for deployment for edge applications. This work aims to address the
problem by proposing optimization of the model sparsity targeted
towards an accelerator architecture.

1.1 Sparsity in CNNs

Sparsity refers to the existence of zeros in weight and input activa-
tion tensors. Recent publications have shown that many common
networks can be pruned dramatically during training without loss
of accuracy[5][4]. Such pruning can reduce the number of non-zero
weights in convolution layers by 20% to 80%.

Dynamic sparsity in input activation arises due to activation func-
tion ReLU (Rectified Linear Unit). This non-linear operator clamps
all negative values to zero, only allowing positive values to go
through. This can result in as high as 70% of the activations being
zero in convolution layers. These inherent sparse activations can
be used to optimize processing by means of compression and hence
reduction in overall ALU operations.

1.2 Hardware Accelerators

Various accelerator architectures have been proposed to tackle low
power CNN inference [9]. Table 1 shows how different architectures
exploit sparsity.
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Table 1: Comparison of Sparse CNN Accelerators

Architecture Gate Skip | Memory Dataflow
ALUop | ALUop | Access
Eyeriss[10] A - A Row Stationary
Cnvlutin[1] A A A Vector Scalar
Cambricon-X[11] w w w Dot Product
SCNN[8] A+W A+W A+W Cartesian Product
SparseCore A+W A+W A+W | Vector Scalar
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Figure 1: Sparsity vs Accuracy trade-off for Resnet-18
2 STRUCTURED SPARSITY

Early pruning techniques have been focused on reducing the total
number of weights which should result in lower computational
costs of inference. Such sparse layers end up having random spar-
sity structure among weight tensors resulting in inefficient design
constraints for accelerators. In this paper, we propose a structured
sparsity scheme. The basic motivation behind such a scheme is
to enforce spatial structure on the layout of non-zero elements in
compressed format.

2.1 k/m:d Sparsity

Given a D dimensional tensor, the sparsity is defined along the vec-
tor in dimension d, as - Out of every m elements, exactly k elements
would be non-zero. For convolution layers, d is defined to be the
dimension corresponding to the output depth.

2.2 Iterative Pruning

In order to observe the effect of sparsity on accuracy we experi-
mented with ILSVRC2012 dataset. We iteratively prune the mini-
mum weight in output dimension in CNN layers. We used ResNet-18
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Figure 2: SparseCore Architecture

architecture for training. We first trained for 30 epochs thereafter,
we iteratively pruned minimum weight in each layer to achieve the
desired sparsity (Figure 1).

3 HARDWARE ARCHITECTURE

Majority of hardware accelerators utilize sparsity only in one tensor,
either weights or activations. The choice of spatial and temporal
unrolling of the data onto a particular accelerator also limits the
ability to exploit sparsity fully. While ALU optimality is addressed
in SCNN([8], the overhead of crossbars, memory barriers and work
fragmentation limit the efficiency of SCNN especially in terms of
energy utilization. SparseCore avoids such limitations by employing
end-to-end global scheduling and dynamic assignment of work
units.

3.1 Dataflow Architecture

Since the network is compressed, the input bandwidth of the ALUs
is likely to be overshadowed by uncompressed output bandwidth re-
quirement. This leads us to propose a novel dataflow scheme called
Weight Local-Output Stationary. Figure 2 shows microarchitec-
ture of the SparseCore accelerator. The compute subsystem consists
of array of Processing Elements (PE), where each PE is assigned an
output depth chunk as a work unit. Intermediate partial summa-
tions are stored in the Accumulation Buffer, and upon completion,
the data is sent through streaming processor for operations like
pooling, normalization, RELU etc., and are eventually compressed
and written to the output layer section of the Activation Memory.
Table 2 gives detailed area breakdown for the accelerator with 64
PEs consisting of 16 ALUs each. On-chip memories contribute to
about 65% of the area of the accelerator core.

Table 2: SparseCore Area Breakdown

Accelerator Unit Size | Area(sqmm)
PE Area 64 2.43
Activation/Index Memory | 2MB 3.35
Weight Memory 512KB 0.84
Accumulation Buffer 512KB 0.84
Misc - 0.2
l Total Area [ [ 7.66
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Figure 3: SparseCore Performance and Power

4 RESULTS

Figure 3 gives performance and power details for a convolution
layer with input volume of 64x64x64 and 3x3x128 filter. SparseCore
can achieve near optimal performance in terms of ALU utiliza-
tion while consuming significantly less energy compared to dense
output stationary execution of the network.

5 CONCLUSION

This paper presents SparseCore architecture for CNN inference.
SparseCore utilizes a novel k/m structured sparsity scheme to im-
plement optimal sparse computation. Iterative pruning methods
can be used to reach high degree of k/m sparsity while retaining
the accuracy of the network.

SparseCore exploits both weight and activation sparsity using
Weight Local-Output Stationary dataflow. This maximizes weight
reuse and minimizes synchronization overhead between processing
elements. In addition, both weights and activation can be stored
in compressed format reducing on-chip storage requirements. Our
analysis shows that with 50% weight and activation sparsity, Spar-
seCore achieves performance improvement of 3.1x and reduces
dynamic power consumption by 2.5x.
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