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ABSTRACT
There is huge demand for targeting complex and large-scale ma-
chine learning applications particularly those based on popular
actively-maintained frameworks such as TensorFlow and CAFFE
to a variety of platforms with accelerators ranging from high-end
desktop GPUs to resource-constrained embedded or mobile GPUs,
FPGAs, and DSPs. However, to deliver good performance differ-
ent platforms may require different algorithms or data structures,
yet code should be easily portable and reused as much as possible
across different devices. The open SYCL standard addresses this
by providing parallel processing through a single-source program-
ming model enabling the same standard C++ code to be used on the
CPU and accelerator. This allows high-level C++ abstractions and
templates to be used to quickly configure device and host code to
cover specific features of the platform. By targeting OpenCL, SYCL
enables C++ applications such as TensorFlow to run efficiently on
OpenCL devices without having to write OpenCL code.

1 INTRODUCTION
Machine learning has been widely used in different areas, such as
image recognition and self-driving vehicles [1, 3, 10, 12].

There are several deep neural networks (DNN) software frame-
works for constructing and executingDNNmodels such as CAFFE [13],
MXNet [4], TensorFlow [1], Theano [2], and Torch [6]. TensorFlow
is a data-flow graph model used for constructing DNN models for
recognizing patterns. Each node in the graph represents a unit
of computations called an operator. Each edge represents an in-
put/output data called a Tensor. Each operator can have k ≥ 0
specializations for different devices. A device-specialized operator
can be directly implemented in the TensorFlow framework, or can
be a wrapper around a third-party library implementing the actual
unit of computation for that operator. The main third-party libraries
in TensorFlow are Eigen [11] and CuDNN [5].

TensorFlow has some features which distinguishes it from other
DNN frameworks. Being a graph-basedmodel, TensorFlow supports
graph-based optimization techniques such as optimized deployment
and deferred execution model. The latter allows the framework to
have global information about the graph in order to issue a sequence
of GPU kernels to the device without waiting for intermediate re-
sults. Also, unlike CAFFE that provides a set of high-level layers for
constructing a neural network model, TensorFlow provides a set of
primitive operators as graph nodes. This gives more flexibility to
users for expressing the model or adding a new layers or optimizers.
Moreover, TensorFlow has an abstraction layer to support the pos-
sibility of adding any future devices to the framework. [1]. While
some computations expressed in DNN models can be executed
across heterogeneous systems, support has so far been limited to
NVIDIA graphics processors using CUDA for almost all existing

frameworks. Therefore, the above abstraction layer in TensorFlow
plays a significant roll to ease up the feasibility of adding OpenCL
support for other processors such as ARM, AMD, and Intel GPUs
and FPGAs.

In this paper we propose an OpenCL-enabled back-end for Ten-
sorFlow via SYCL in order to enable developers to access a wider
range of processor combinations.

SYCL [18] is a royalty-free, cross-platform C++ abstraction layer
that builds on the underlying concepts, portability and efficiency
of OpenCL, while adding the ease-of-use and flexibility of modern
C++14. This solution also benefits from ensuring the implementa-
tion is maintainable and compliant as the standards evolve.

Dispatching device kernels from C++ applications is a widely
used method for dealing with heterogeneous platforms in various
programming models, such as CUDA [15], C++AMP [14], HCC [17],
OpenACC [9], or OpenMP [16]. SYCL brings this capability to a
wide range of accelerators supporting OpenCL.

This lets developers create powerful, more performance-portable
template libraries that can take advantage of a wide range of het-
erogeneous hardware and software platforms. Moreover, porting
TensorFlow to OpenCL would mean handwriting the kernels in
OpenCL C and having separate code-bases, which would be com-
plicated to maintain. By using SYCL, everything is single-source
C++, and therefore it is possible to use a non-intrusive approach to
add the SYCL back-end to TensorFlow.

2 THE APPROACH
There are three steps for implementing the SYCL back-end for Ten-
sorFlow: In the first step we have introduced the SYCL device by
specializing the TensorFlow’s device abstraction layer. The imple-
mented SYCL device supports any OpenCL-enabled devices. In the
next step we implement a SYCL back-end for all the linear opera-
tions in the Eigen Tensor module. The detailed implementation of
a SYCL back-end for Eigen Tensor module can be found in [7, 8].
Each TensorFlow operator maps to an Eigen expression. As the
Eigen has the same expression interface regardless of the selected
device, in most cases, there is no need to specialize TensorFlow’s
operators for SYCL. In the last step we have registered the existing
TensorFlow operators for SYCL device. Listing 1 represents the
registration of the TensorFlow sqrt operation for SYCL, CPU and
CUDA respectively.

Through SYCL, we have also provided the OpenCL interoper-
ability mode. This will allow users to embed hand-tuned OpenCL
code for expensive operations such as matrix multiplication or
convolution.

Figure 1 represents the TensorFlow architecture for the SYCL
back-end.



1 namespace tensorflow {

2 REGISTER5(UnaryOp, CPU, "Sqrt", functor::sqrt, float, Eigen::half, double,

3 complex64, complex128);

4 #if GOOGLE_CUDA

5 REGISTER3(UnaryOp, GPU, "Sqrt", functor::sqrt, float, Eigen::half, double);

6 #endif

7 #ifdef TENSORFLOW_USE_SYCL

8 REGISTER2(UnaryOp, SYCL, "Sqrt", functor::sqrt, float, double);

9 #endif // TENSORFLOW_USE_SYCL

10 }

Listing 1: Registration of the sqrt operations in TensorFlow

Figure 1: TensorFlow architecture for SYCL back-end

Figure 2: DNN model speed-up over A53 CPU on Hikey
board

3 EVALUATION
The evaluation of the proposed approach was carried out on an
ARM Hikey board with A53 CPU and Mali GPU.

Figure 2 represents the speed up we can achieve for DNNmodels
over A53 ARM CPU when using SYCL back-end on ARM Mali. As
shown in the figure 2, for the inference model we can achieve up to 4
times speed up over the A53 CPU back-end. For the training models
the bottleneck is the back propagation algorithm proposed for SYCL.
Currently we are working on improving the performance of the
back propagation algorithm for convolutional neural networks.

As Eigen has been used as the backbone of the TensorFlow
operator, we compare the performance of the Eigen implementation
of TensorFlow operators registered for SYCL on Arm Mali in order
to further analyze the SYCL kernels. We have divided the Eigen
operations into compute-bound and memory-bound operations.

Figures 3 and 4 represent up to an order of magnitude speed-up
over Arm A53 CPU for both memory-bound and compute-bound
kernels. However, there are cases like tensor chipping and shuffling

Figure 3: Tensor contraction speed-up over A53 CPU on
Hikey board.

Figure 4: Eigen kernels speed-up over A53 CPU on Hikey
board. The input data size is 4k.

operations where we can see a drop in performance. One reason for
such behaviour could be due to non-coalesced memory access. Non-
coalesced memory accesses may have more performance impact
on GPU than CPU. Such an example can be chipping a row of a
matrix where the data layout is column major. Also, the reduction
algorithm is a naive implementation suffering from non-coalesced
memory accesses and we are working on its improvement.

4 CONCLUSIONS
This paper represents an OpenCL back-end for TensorFlow using
SYCL. Our results show significant improvement over those run
on ARM A53 CPU, specially for large-scale applications. We are
maintaining the TensorFlow SYCL back-end and actively optimizing
TensorFlow’s operators for different DNN models across different
platforms.
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