
Data Infrastructure for Machine Learning

Eric Breck, Neoklis Polyzotis, Sudip Roy, Steven Euijong Whang*, Martin Zinkevich
Google Research

{ebreck,npolyzotis,sudipr,swhang,martinz}@google.com

ABSTRACT

Data quality is critical for effective machine learning, and
this makes data a first-class citizen in the context of machine
learning, on par with algorithms, software, and infrastructure.
As a result, machine-learning platforms need to support data
analysis and validation in a principled manner, throughout
the lifecycle of the machine learning process. This paper
reviews the data infrastructure we built at Google to ad-
dress these challenges in the context of large-scale production
machine learning pipelines.

1 INTRODUCTION

At a high level, a machine learning pipeline uses training
data to generate a model, which can then be used to perform
inference with serving data (see Figure 1). Most work in
academia and industry has focused on improving the efficiency
and quality of training and inference. However, we contend
that it is equally important to take a data point-of-view
and examine critically the management of the (training and
serving) data at the end points: simply put, the quality and
speed of training and inference are immaterial if the input
data is wrong.

Training
Data Train Model Serving

DataServe

Figure 1: Machine learning pipeline from 10,000 feet

There are several challenges to address in managing train-
ing and serving data. Data is typically large, it may arrive
continuously, and in the latter case it may also arrive in
(incomplete) chunks. Moreover, data can contain errors that
need to be caught early, before they propagate downstream
and taint models. In addition, data typically comes with few
semantics attached to it, which makes error detection a hard
problem.

*Corresponding author

Permission to make digital or hard copies of part or all of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SysML, February 2018, Stanford, California USA

© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

In this paper we describe the infrastructure that we built
at Google to analyze and validate the (training and serving)
data that drive production machine learning pipelines. Our
system allows machine learning users to continuously check
for errors in each instance of training or serving data, detect
drifts between instances, and test how data errors can affect
the correctness of models. At the core is a data schema
that describes the user’s expectations for correct data. This
concept is borrowed from database management systems but
its maintenance and application acquires new flavors in the
context of machine learning.

Our system has been deployed at Google as part of the TFX
platform [2] and currently analyzes and validates more than
one petabyte of data per day. Our system has caught several
data errors in production pipelines with two tangible benefits
for machine learning users: savings in engineering hours to
detect, debug, and fix the errors, and model-quality wins from
using better data. While data schema and validation were
introduced in the TFX paper [2], we provide more details on
skew detection and introduce model unit testing.

2 DATA-DRIVEN SCHEMA

A schema represents a logical model of data for machine
learning that contains constraints and captures semantics
that are necessary for machine learning data validation and
model testing.

feature {
 name: ‘event’
 presence: { min_fraction: 1 }
 value_count: {

min: 1
max: 1

 }
 type: BYTES
 string_domain {
 value: ‘CLICK’
 value: ‘CONVERSION’
 }
}

0: {
 features: {
 feature: {
 name: ‘event’
 string_list: { CLICK }
 }
 }
 ...
}
1: {
 features: {
 feature: {
 name: ‘event’
 string_list: { CONVERSION }
 }
 }
 ...
}
...

Schema
Examples

Figure 2: A data-driven schema

Figure 2 shows an example schema (represented in protocol-
buffer format [1]). The data in this case is expected to contain
an event feature which appears in 100% of the examples
(the presence specification), takes exactly one value (the
value count specification), and this can be either ‘CLICK’
or ‘CONVERSION’ (the domain specification). Although not
shown in the figure, the schema can also encode domains for
numeric features and contain additional metadata including
semantic information (e.g., string values for boolean True or
False), whether a feature’s integer values are considered as

https://doi.org/10.1145/nnnnnnn.nnnnnnn

identifiers, or constraints on the distribution of the data, to
name a few.

The schema is designed to be both human- and machine-
readable/writable: human-readable/writable because the ma-
chine learning user is ultimately the owner of the schema and
is expected to curate it over time; machine-readable/writable
because schema is used to perform data validation and model
testing.

A schema can become large (many machine learning pipelines
have 1000s of features) and so our system takes two steps to
help the machine learning user curate the schema. First, our
system can generate an initial version of the schema based
on analysis of existing data. This initial version attempts to
capture salient properties of the data without overfitting to
the particular data instance. The latter is important, since
an overfitted schema will lead to false-positives in data vali-
dation and hence noisy alerts for the machine learning user.
Second, our system can recommend changes to the schema
as new data is examined.

3 DATA VALIDATION AND SKEW
DETECTION

Our system validates an instance of the data by comparing
it with the schema (Figure 3). Any discrepancy results in
an alert to the machine learning user. An important point is
that these alerts must be interpretable and actionable. For
example, saying that the label does not satisfy the schema
is less actionable than saying that a label is not in 10% of
examples. Our system can also suggest changes to the schema
for errors that can reflect a natural evolution of the data
(e.g., the appearance of new domain values). The goal is to
help the machine learning user curate the schema as the data
evolves over time.

Our system also detects skew between instances (e.g. drifts
over time, or between training and serving) comparing them
to each other. Of particular importance is training-serving
skew, which can occur when different code paths are followed
in the generation of training and serving data. This type
of skew is common in production pipelines and has adverse
effects on the quality of inferences. Our system detects skew
both at the level of individual examples (if they have identi-
fiers) and in aggregate (based on statistical goodness-of-fit
metrics). Again, our system focuses on errors that are easy to
localize and thus debug. For instance, we consider “the most
frequent value changed” to be a more informative indication
of drift than “the KL-divergence is too high”. This intuition
has led us to choose more interpretable, but perhaps less
general, statistical measures of drift. For example, we use
bounds on L-∞ rather than generic measures such as the
chi-squared test or KL divergence. (The chi-squared test also
has the problem of giving many false positives for large data
where a small amount drift is expected.)

4 MODEL UNIT TESTING

In addition to validating data, the schema can also be used
to generate synthetic data for model unit testing. Data fuzz

feature {
 key: ‘event’
 value {
 bytes_list { ‘IMPRESSIONS’ }
 }
}

Fig. 2 Schema !Examples contain missing values.
Fix: Add value to domain

string_domain {
 name: ‘event’
 value: ‘CLICKS’
 value: ‘CONVERSIONS’
+ value: ‘IMPRESSIONS’
}

D
at

a
V

al
id

at
io

n

Figure 3: Schema-driven validation

testing is a common practice to evaluate services on a variety
of inputs and is recently being used in machine learning model
testing as well [4]. However, purely randomly generated data
might lack required features or otherwise cause training code
to crash in a way that would not occur with real data. In
contrast, the schema enables us to randomly generate data
in a principled fashion, such that crashes would indicate a
problem needing to be addressed.

For instance, our unit test framework uses the schema in
Figure 2 and ensures that each randomly generated data
example has the event feature, each of which would have
one value, uniformly chosen at random to be either ‘CLICK’
or ‘CONVERSION’. Similarly, integral features would be
random integers from the range specified in the schema, to
name another case. The framework also includes specific
generators for image examples and is easily extensible by
users, e.g. to include additional generation constraints not
expressible in the schema. It also includes the option to use a
specific saved snapshot of data, but this is usually less robust
than generating from data, and few teams use it.

The generated data is then used to train and evaluate a
machine learning model for a small number of steps. The
goal is not to test the model’s ability to learn, but to test the
code’s ability to run, process data, and call machine learning
APIs. Model unit testing is one part of testing an end-to-end
machine learning system [3].

Using this type of testing, our system can uncover discrep-
ancies between the schema (and hence, the machine learning
user’s expectation of the data) and the assumptions made in
modeling code. For instance, suppose that the modeling code
applies a logarithm transformation on an integer feature, but
the schema does not specify the constraint that the feature is
positive. During testing, the modeling code will be exercised
with synthetic examples where the feature has non-positive
values, thus leading to an error. This error can direct the ma-
chine learning user to update either the modeling code or the
schema, so as to align data expectations between validation
and training.

REFERENCES
[1] 2017. Protocol Buffers. https://developers.google.com/

protocol-buffers/. (2017).
[2] Denis Baylor, Eric Breck, Heng-Tze Cheng, Noah Fiedel, Chuan Yu

Foo, Zakaria Haque, Salem Haykal, Mustafa Ispir, Vihan Jain,
Levent Koc, Chiu Yuen Koo, Lukasz Lew, Clemens Mewald, Ak-
shay Naresh Modi, Neoklis Polyzotis, Sukriti Ramesh, Sudip Roy,
Steven Euijong Whang, Martin Wicke, Jarek Wilkiewicz, Xin
Zhang, and Martin Zinkevich. 2017. TFX: A TensorFlow-Based
Production-Scale Machine Learning Platform. In SIGKDD. 1387–
1395. https://doi.org/10.1145/3097983.3098021

https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/
https://doi.org/10.1145/3097983.3098021

[3] Eric Breck, Shanqing Cai, Eric Nielsen, Michael Salib, and D.
Sculley. 2017. The ML Test Score: A Rubric for ML Production
Readiness and Technical Debt Reduction. In Proceedings of IEEE
Big Data 2017.

[4] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. 2017. Deep-
Xplore: Automated Whitebox Testing of Deep Learning Systems.
In Proceedings of the 26th Symposium on Operating Systems
Principles (SOSP ’17). 1–18.

	Abstract
	1 Introduction
	2 Data-driven Schema
	3 Data Validation and Skew Detection
	4 Model Unit Testing
	References

