
On Human Intellect and Machine Failures:
Troubleshooting Integrative Machine Learning Systems∗

Besmira Nushi Ece Kamar Eric Horvitz Donald Kossmann
Microsoft Research, Redmond, WA, USA

benushi,eckamar,horvitz,donaldk@microsoft.com

ABSTRACT
We study the problem of troubleshooting machine learning systems
that rely on analytical pipelines of distinct components. Under-
standing and fixing errors that arise in such integrative systems is
difficult as failures can occur at multiple points in the execution
workflow. Moreover, errors can propagate, become amplified or
be suppressed, making blame assignment difficult. We propose a
human-in-the-loop methodology which leverages human intellect
for troubleshooting system failures. The approach simulates po-
tential component fixes through human computation tasks and
measures the expected improvements in the holistic behavior of the
system. The method provides guidance to designers about how they
can best improve the system. We demonstrate the effectiveness of
the approach on an automated image captioning system that has
been pressed into real-world use.

1 PROBLEM CHARACTERIZATION
Advances in machine learning have enabled the design of integra-
tive systems that perform sophisticated tasks via the execution of
analytical pipelines of components. Despite the widespread adop-
tion of such systems, current applications lack the ability to under-
stand, diagnose, and fix their own mistakes which consequently
reduces users’ trust and limits future improvements. Therefore,
the problem of understanding and troubleshooting failures of ma-
chine learning systems is of particular interest in the community
[1–4, 8, 9]. This work studies component-based machine learning
systems composed of specialized components that are individually
trained for solving specific problems and work altogether for solv-
ing a single complex task. Our goal is to assist system designers by
(ii) identifying and quantifying the different types of system failures,
and (2) measuring the impact of potential component fixes in the
overall system quality for guiding system improvement decisions.

We analyze how the following characteristics of these integrated
learning systems make it challenging to assign blame to individual
components:
Continuous quality measures. Uncertainty is inherent in ma-
chine learning components. When these components work together
to solve complex tasks, the measure of quality for individual com-
ponents and the system as a whole is no longer binary, rather it
spans a wide spectrum. Troubleshooting in this quality continuum
where all components are only partially correct is non-trivial. There-
fore, the evaluation of these systems needs to go beyond accuracy
metrics to deeper analysis of system behavior.
Complex component entanglement. In integrative learning sys-
tems, components have complex influences on each other as they

∗This work was previously published in AAAI 2017[7].

Component
1

I/O

✗

✓

Component
2

I/O

✗

✓

Component-based machine learning system

Component
3

✗

✓
Logs

System
output

Failures
Fixes

Ev
al
ua
tio

n

Figure 1: Troubleshooting with humans in the loop.

may be tightly coupled or the boundaries between their responsi-
bilities may not be clear. When the quality of a component depends
on the output of previous components, blame cannot be assigned to
individual components without decoupling imperfection problems
in component inputs.
Non-monotonic error. Oftentimes, improving the outputs of sin-
gle components does not guarantee holistic system improvement.
On the contrary, doing so may lead to quality deterioration. For
example, when components are tuned to suppress erroneous be-
havior of preceding components, applying fixes to the earlier ones
may result to unknown failures.

These challenges hinder future system improvements as design-
ers lack an understanding of how different potential fixes on com-
ponents may improve the overall system output.

2 METHODOLOGY
Overview. We introduce a troubleshooting methodology which
relies on crowdworkers to identify and fix mistakes in existing
systems. Human intervention is crucial to the approach as human
fixes simulate improved component output that cannot be produced
otherwise without significant system development efforts. Figure 1
shows the main flow of our approach. First, workers evaluate the
system output without any fix to analyze the current system state.
To simulate a component fix, the input and output of the component
accompanied with the fix description are sent to a crowdsourcing
platform as microtasks. Once workers apply the targeted fixes for
a component, the fixed output is integrated back into the running
system, which thereby generates an improved version of the com-
ponent. The system is executed as a simulation with the injected
fix and the output is evaluated again via crowdworkers. The overall
process collects a valuable set of log data on system failures, human
fixes, and their impact on the final output. This data can then be
analyzed to identify the most effective combination of component
improvements to guide development efforts.

The execution of the methodology is guided by the fix workflow,
which is a combination of various component fixes to be evaluated.
Based on the system architecture, the system designer chooses



SYSML’18, February 2018, Stanford, CA, USA Besmira Nushi Ece Kamar Eric Horvitz Donald Kossmann

Visual
Detector

snowboard, 0.96
snow, 0.94
man, 0.89

mountain, 0.87
skis, 0.71. . .
I/O

Language
Model

A man flying through
the air on a snowboard.

. . .
A man riding skis

on a snowy mountain.

I/O
Caption
Reranker

#1
A man flying through
the air on a snowboard.

Figure 2: The image captioning system.

which fix workflows to execute and evaluate for the purpose of
troubleshooting.
Troubleshooting outcomes.Applying human fixworkflows helps
system designers to observe the effect of component fixes on sys-
tem performance, overcoming the challenges raised by the problem
characteristics.

(1) Continuous quality measures — Comparing the system quality
before and after various fix workflow executions not only can
quantify the current quality of system and component output,
but it can also isolate and quantify the effect of individual com-
ponent fixes. For example, if many components are partially
failing and are possibly responsible for a specific error, the de-
signer can test the respective fixes, systematically understand
their impact, and decide which are the most promising ones.

(2) Non-monotonic error —Non-monotonic error propagation is dis-
closed when the overall system quality drops after a component
fix. When such a behavior is observed, the system designer can
conclude that although these fixes may improve the internal
component state, they are not advisable to be implemented in
the current architecture as they produce negative artifacts.

(3) Complex component entanglement — Entanglement detection
requires the execution of workflows with different combina-
tions of fixes to measure the individual and the joint effect of
component fixes. For example, if two consecutive components
are entangled, individual fixes in either one of them may not
improve the final output. However, if both components are
fixed jointly, this may trigger a significant improvement. The
designer could also use this information to detect entanglement
and correct the system architecture.

3 CASE STUDY AND RESULTS
We apply our methodology to a state-of-the-art integrative learning
system developed to automatically caption images [5]. As shown
in Figure 2, the system involves three machine learning compo-
nents in a pipeline. The Visual Detector takes an image as an input
and detects a list of words associated with recognition scores. The
Language Model generates likely word sequences as captions based
on the words recognized from the Visual Detector, without having
access to the input image. Finally, the Caption Reranker reranks the
captions generated from the Language Model and selects the best

Component Fix description
Visual Detector Add / remove objects
Visual Detector Add / remove activities
Language Model Remove noncommonsense captions
Language Model Remove non-fluent captions
Caption Reranker Rerank Top 10 captions

Table 1: Summary of fixes for the image captioning system.

No fix Visual
Detector

Language
Model

Caption
Reranker All fixes

Accuracy 3.674 4.035 3.712 4.145 4.451
Detail 3.563 3.916 3.602 3.966 4.247
Language 4.509 4.432 4.632 4.626 4.660
Commonsense 0.957 0.942 0.982 0.988 0.998
General 3.517 3.831 3.572 3.973 4.264
%Satisfactory 57.8% 68.0% 59.3% 73.6% 86.9%

Table 2: Summary of results.

match for the image based on <image,caption> similarity scores.
The multimodal nature of this case study allows us to demonstrate
the applicability of the approach for components processing differ-
ent forms of data and carrying out various tasks.

For this system we implemented crowdsourcing tasks for (i)
evaluating the system output, and (ii) simulating distinct component
fixes. Table 1 lists all component fixes specifically designed for this
case study. Each fix shows to crowdsourcing workers the respective
component input and output for a particular image and requires
workers to fix the output based on the task guidelines. For example,
for the Visual Detector, crowdsourcing workers can add new items
in the list of automatically detected words or they remove non-
relevant words.

The evaluation of the captioning system with our methodology
uses an Evaluation dataset of 1000 images randomly selected from
the MSCOCO validation dataset[6]. Table 2 shows a summary of
results including the improvements from each component and the
complete fix workflow which sequentially applies all component
fixes. A complete analysis using both human and automaticmachine
translation scores can be found in the full version of the paper[7].
Experiments highlight the benefits of making informed decisions
about component fixes as their effectiveness varies greatly (18%, 3%
and 27% for the three components respectively). In contrast to initial
assumptions of system designers, fixes in the Caption Reranker
are the most effective ones due to detected entanglement in the
previous two components. This entanglement then causes non-
monotonic error behavior for the Visual Detector fixes, which we
can observe and report with our methodology. Finally, the complete
fix workflow increases the number of satisfactory captions by 50%.
Conclusion.As machine learning models become more mature, in-
tegrating them into larger systems creates opportunities for solving
highly complex tasks. However, troubleshooting component-based
learning systems is a tedious process due to the inherent uncer-
tainty and entangled dependencies of machine learning compo-
nents. Therefore, the work of system designers goes beyond initial
system development and extends to continuously monitoring, eval-
uating, and improving these integrative systems. The proposed
human-in-the-loop troubleshooting methodology supports system
designers by providing a rich counterfactual analysis, which is
informative for taking future improvement decisions.



On Human Intellect and Machine Failures:
Troubleshooting Integrative Machine Learning Systems SYSML’18, February 2018, Stanford, CA, USA

REFERENCES
[1] Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and

Dan Mané. 2016. Concrete problems in AI safety. arXiv preprint arXiv:1606.06565
(2016).

[2] Sean Andrist, Dan Bohus, Ece Kamar, and Eric Horvitz. 2017. What Went Wrong
and Why? Diagnosing Situated Interaction Failures in the Wild. In International
Conference on Social Robotics. Springer, 293–303.

[3] Dan Bohus, Sean Andrist, and Mihai Jalobeanu. 2017. Rapid Development of Multi-
modal Interactive Systems: A Demonstration of Platform for Situated Intelligence.
(2017).

[4] Shanqing Cai, Eric Breck, Eric Nielsen, Michael Salib, and D Sculley. 2016. Tensor-
Flow Debugger: Debugging Dataflow Graphs for Machine Learning. (2016).

[5] Hao Fang, Saurabh Gupta, Forrest Iandola, Rupesh K Srivastava, Li Deng, Piotr
Dollár, Jianfeng Gao, Xiaodong He, Margaret Mitchell, John C Platt, et al. 2015.
From captions to visual concepts and back. In CVPR. 1473–1482.

[6] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva
Ramanan, Piotr Dollár, and C Lawrence Zitnick. 2014. Microsoft coco: Common
objects in context. In ECCV 2014. Springer, 740–755.

[7] Besmira Nushi, Ece Kamar, Eric Horvitz, and Donald Kossmann. 2017. On Human
Intellect and Machine Failures: Troubleshooting Integrative Machine Learning
Systems.. In AAAI. 1017–1025.

[8] D Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips, Dietmar
Ebner, Vinay Chaudhary, Michael Young, Jean-François Crespo, and Dan Dennison.
2015. Hidden Technical Debt in Machine Learning Systems. In NIPS.

[9] Mark Staples, Liming Zhu, and John Grundy. 2016. Continuous validation for
data analytics systems. In Software Engineering Companion (ICSE-C), IEEE/ACM
International Conference on. IEEE, 769–772.


	Abstract
	1 Problem characterization
	2 Methodology
	3 Case study and results
	References

