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ABSTRACT

As deep neural networks get more complex and
input datasets get larger, it can take days or even
weeks to train a deep neural network to the desired
accuracy. Therefore, enabling distributed deep
learning at a massive scale is critical, since it of-
fers the potential to reduce the training time from
weeks to hours. In this paper, we present Blue-
Connect, an efficient communication library for
distributed deep learning that is highly optimized
for popular GPU-based platforms. BlueConnect
decomposes a single all-reduce operation into a
large number of parallelizable reduce-scatter and
all-gather operations to exploit the trade-off be-
tween latency and bandwidth, and adapt to a va-
riety of network configurations. Therefore, each
individual operation can be mapped to a differ-
ent network fabric and take advantage of the best
performing implementation for the correspond-
ing fabric. According to our experimental results
on two system configurations, BlueConnect can
outperform the leading industrial communication
library by wide margin, and the BlueConnect
integrated Caffe2 can significantly reduce syn-
chronization overhead by 87% on 192 GPUs for
Resnet-50 training over prior schemes.

1 INTRODUCTION

Deep learning has become the de-facto technique for an in-
creasing number of cognitive applications, including vision,
speech, and language translation (Amodei et al., 2015; Ioffe
& Szegedy, 2015; Jia et al., 2014). The success is driven by
the availability of an enormous volume of data and advances
in deep neural networks, which in turn make deep learning
one of the most computationally demanding AI applica-
tions (Amodei et al., 2015; Chen et al., 2016; Krizhevsky
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et al., 2012). Hardware accelerators such as GPU/TPU and
their accompanying software stacks have provided a sig-
nificant amount of speed up (Jouppi et al., 2017; NVidia,
2017b). However, deep neural network training for speech
and vision can still take days and even weeks. Therefore,
parallelization by distributing the deep learning training to
many (upwards of hundreds) GPUs over a cluster or on a
cloud environment is critical to cut the training time from
weeks to hours and minutes (Goyal et al., 2017; Iandola
et al., 2015; Jia et al., 2018; You et al., 2017a;b).

Distributed deep learning is challenging because as the num-
ber of learners (or GPUs) increases, the computation time
decreases while the amount of communication stays con-
stant (Goyal et al., 2017; Uber, 2017; You et al., 2017a),
resulting in unfavorable computation to communication ra-
tios, and thus diminished returns on more learners. One
can either increase the computational workload with a large
mini-batch size in stochastic gradient decent (SGD) (i.e.,
weak scaling) and/or decrease the communication overhead.
However, it is known that a large mini-batch beyond a cer-
tain point can degrade training quality (Balles et al., 2016;
Keskar et al., 2016; Krizhevsky, 2014), not to mention that
mini-batch size is limited by the GPU memory capacity in
practice. Therefore, in addition to enabling deep learning
with large mini-batch sizes (Goyal et al., 2017; Jia et al.,
2018; You et al., 2017a;b), it is crucial to develop a fully op-
timized communication mechanism tuned for deep learning
for massive scale-out that can a) maximize the bandwidth
utilization in popular deep learning environments like GPU-
based cluster/cloud, and b) minimize the linearly growing
communication latency with the number of learners (Srid-
haran et al., 2018).

In this paper, we report the performance of an efficient
communication library for deep learning, BlueConnect, that
provides a highly efficient all-reduce algorithm for SGD, an
integral part in modern deep learning frameworks (Abadi
et al., 2016; Chen et al., 2015; Facebook, a;b; Goyal et al.,
2017; Jia et al., 2014; Niitani et al., 2017; NVidia, 2017a;
Seide & Agarwal, 2016). The key idea in BlueConnect is to
decompose one all-reduce operation into series of reduce-
scatter and all-gather patterns in a topology-aware fashion,
which enables a large-scale deep learning with reduced com-
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munication overhead. Our technical contribution includes:

• BlueConnect adapts to the hierarchy of communication
bandwidths by leveraging topology-awareness, so that
it fully utilizes the heterogeneous network architec-
ture in popular deep learning platforms (IBM, 2017a;
NVidia, a).

• Through topology-aware decomposition, BlueConnect
also minimizes the communication latency overhead,
the critical bottleneck in large-scale deep learning.

• For each decomposed piece, BlueConnect can mix-
and-match various reduce-scatter and all-gather imple-
mentations/algorithms over different network fabrics
to maximize network utilization.

The rest of the paper is organized as follows. We present
preliminaries in Section 2. Section 3 discusses our pro-
posed algorithm, BlueConnect. Experimental results are in
Section 4, followed by the conclusion in Section 5.

2 PRELIMINARIES

2.1 Prior Arts

To enable large scale distributed deep learning with hun-
dreds of GPUs under popular data-parallelism (Amodei
et al., 2015; Goyal et al., 2017; You et al., 2017a), the batch
size must be in the thousands since GPU utilization and com-
pute to communication ratio are low for single digit batch
size per GPU for typical neural networks. Since a large
batch size in deep learning may cause poor convergence,
there have been recent efforts to mitigate such convergence
and generalization issues (Goyal et al., 2017; Keskar et al.,
2016; You et al., 2017a). (Goyal et al., 2017) proposed a
linear learning rate scaling rule and performed learning rate
warm-up from a small/safe value to the larger target value
in the early training phase, and then resorting to the usual
step-wise descent. For gradient synchronization, (Goyal
et al., 2017) leveraged a deep learning communication li-
brary (Facebook, b) to demonstrate that Resnet-50 (He et al.,
2015) can be trained in one hour over 32 DGX-1’s (256
GPUs). Recently, (Jia et al., 2018) demonstrated that the
same Resnet50 can be trained in four minutes over 1024
GPUs with low-precision (i.e., FP16).

While this is an impressive result and there exist numerous
communication algorithms for distributed computing plat-
forms (Almási et al., 2005; Baidu, 2017; Jia et al., 2018;
Thakur et al., 2005), they are not necessarily customized and
optimized for large scale distributed deep learning (Amodei
et al., 2015): a) most existing techniques were developed
for a homogeneous environment, while deep learning will
be increasingly deployed on a heterogeneous environment

Table 1. Notations.

α non-zero latency time per transfer at each network switch
wi bandwidth (unit/sec) of network switch type i
si.j a network switch instance j with wi

W a set of network bandwidths, {wi|∃i ∈ Z≥0}
S a set of switch instances, {si.j |wi ∈W, ∃j ∈ Z≥0}
P a set of learners
N the gradient’s size in unit
c(r, w) a set of learners that perform reduce scatter

and all gather over bandwidth w with a learner r

like cloud, b) the traffic generated by deep learning is highly
bursty and extremely large (i.e., 100MB -1GB), while ex-
isting techniques have been optimized for relatively small
and frequent exchanges, and c) most existing algorithms are
not tuned for new network fabrics (i.e, NVLink (NVLink,
2017)). As future GPUs/accelerators double their perfor-
mance each generation, the gradient synchronization in SGD
will become a considerable bottleneck in large-scale deep
learning (Keuper, 2016). Hence, it is in great demand to
study an efficient communication technique for deep learn-
ing that addresses the 3 issues mentioned above.

Other approaches to reduce communication overhead in
deep learning are largely based on approximation of fully
synchronous SGD (Wang & Joshi, 2018) including asyn-
chronous SGD (ASGD) where each learner can subscribe
the updated weights from a parameter server asynchronously
(i.e., removing the synchronization barrier and suppressing
bursty traffic) (Niu et al., 2011; Zhang et al., 2015a;b) and
decentralized SGD where each learner communicates only
with a subset of all learners (Lian et al., 2017). It is shown
that such approximated or stochastic methods can improve
the scalability of distributed deep learning but at a cost of po-
tentially reduced accuracy and instable convergence (Chen
et al., 2016).

2.2 Notations and Basic Performance Models

Notations used in this paper are listed in Table 1. We ignore
arithmetic operation time, as it is trivially cheap in deep
learning on GPUs. Then, for a given data size n, a learner
count p, and a bandwidthw, the performance of a ring-based
communication pattern can be expressed as follows (Thakur
et al., 2005):

Tr(p, n, α, w) = (p− 1)α+
p− 1

p

n

w
(1)

When the latency between any two nodes is uniform and
p is a power-of-two number, one can use recursive halv-
ing/doubling to obtain the same result with smaller latency,
which can expressed as follows (Thakur et al., 2005):

Tc(p, n, α, w) = lg(p)α+
p− 1

p

n

w
(2)
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Figure 1. 4 nodes with 12 learners on heterogeneous network ar-
chitecture connected hierarchically.

By combining Eq. (1) and (2), we define the following to
get the best of both:

Tr/c(p, n, α, w) =
{
Tc(p, n, α, w) p = 2q, q ∈ Z
Tr(p, n, α, w) otherwise (3)

Based on the ring and recursive communication pat-
terns, we can compute the communication performance of
broadcast or reduce as follows (Thakur et al., 2005):

Tbcast(p, n, α, w) = Treduce(p, n, α, w)
= Tc(p, n, α, w) + Tr(p, n, α, w) (4)

Since our focus is on heterogeneous network architec-
ture (Dichev & Lastovetsky, 2014), we extend the homoge-
neous model (Thakur et al., 2005) by using different wi. For
example, we assume a typical hierarchically built cluster
over tree-like heterogeneous network architecture (NVidia,
b) as in Fig. 1 where 12 learners (P = {Ai, Bi, Ci, Di|∀i ∈
{0, 1, 2}}) are connected through heterogeneous network
switches in S = {s0.{0,1,2,3}, s1.{0,1}, s2.0}. Regarding the
example in Fig 1, s0.∗ can represent an intra-node network
like NVLink around 32GB/s per lane, while s1.∗ and s2.0
may represent inter-node switches for 100Gbps InfiniBand.
In such cases, w1 and w2 would be 100Gbps and 200Gbps
respectively to ideally match the total uplink bandwidth
from all the hanging nodes (e.g., fat-tree (Al-Fares et al.,
2008; NVidia, b)).

2.3 All-Reduce for Distributed SGD

The key communication pattern used in SGD synchroniza-
tion in deep learning is all-reduce (Amodei et al., 2015;
Baidu, 2017) which is popularly implemented with ring-
based reduce scatter or all gather (Thakur et al.,
2005). Based on Eq.(1,4), the synchronization costs of
prior arts in deep learning can be computed. For exam-
ple of one-level ring-based all-reduce in (Baidu, 2017;

Figure 2. Two-level all-reduce (Jia et al., 2018) where only
master learners are active in the 2nd step.

Thakur et al., 2005) can be expressed with the following
performance model:

Tone lvl = 2(|P | − 1){α+

N
|P |

min0≤i<|W |{wi}
} (5)

= 2Tr(|P |, N, α,minW ) (6)

where there are 2(|P | − 1) iterations in Eq. (5), and each
iteration needs to transfer N

|P | data over w0, w1, ..., w|W |−1
in the worst case (e.g., marked with dotted arrows from
A0 to D2 in Fig. 1). Although one-level ring-based
all-reduce has been widely used for traditional high-
performance computing, it is not quite suitable for large-
scale deep learning for two reasons:

• A node with multiple GPUs (up to 16 GPUs per
node (Amazon)) may have multiple learners inside
and increases |P | fast, which would rapidly increase
the latency of deep learning communication (i.e., a
large multiplier to α).

• Since deep learning typically runs on a heterogeneous
network topology (e.g., Fig. 1), the performance of
one-level approach is gated by the slowest bandwidth
along the path (i.e., minW ), not fully utilizing other
fast networks fabrics.

To address this problem, a two-level approach is used in the
state-of-the-art deep learning softwares (Facebook, b; Jia
et al., 2018; NVidia, 2017a) shown in Fig. 2. In the first step,
the gradients are reduced to the master learner on each node.
Then, a small-scale one-level ring-based all-reduce is
applied among the master learners only. Finally, the gradient
in the master learners is locally broadcast back to the other
learners within the same node, synchronizing all the learners
in the training task. When |P | is decomposed into two
learner counts such as p0 (the number of learners within
each node) and p1 (the number of master learners) like
|P | = p0p1, the performance of such a two-level scheme
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can be formally expressed as follows (Jia et al., 2018):

Ttwo lvl = Treduce(p0, N, α,w0)*reduce to master*

+ Tbcast(p0, N, α,w0) *bcast from master*

+ 2Tr/c(p1, N, α, min
0≤i<|W |

{wi})

= 2Tc(p0, N, α,w0) + 2Tr(p0, N, α,w0)

+ 2Tr/c(
P

p0
, N, α,minW ) (7)

Although we can trivially show that Eq. (7) has smaller
latency overhead than Eq. (6), it would still suffer from the
following three limitations:

• Latency overhead can be large when p0 � |P |.

• Performance is still gated by minW .

• Many learners stay idle during the 2nd step, leading to
bandwidth under-utilization.

• reduce/broadcast at the first step and the last step
is expensive.

Our proposed BlueConnect in Section 3 addresses these limi-
tations with a novel topology-aware scheme as in Section 3.2
based on the all-reduce decomposition in Section 3.1.

3 BLUECONNECT

In this section, we introduce a communication library for
deep learning, BlueConnect, with detailed examples. The
main goal of BlueConnect is to greatly reduce the commu-
nication/synchronization overhead for massive scale-out of
deep learning based on topology-aware all-reduce. In
contrast to the prior arts in Section 2, BlueConnect relies
on a series of multiple and concurrent reduce-scatter
and all-gather operations and generates traffic patterns
optimized for heterogeneous network topology, leveraging
full network capacity. We assume tree-topology for network
architecture for illustration purpose, but the BlueConnect is
flexible enough to be mapped to other architectures includ-
ing mesh/torus network (Almási et al., 2005) as well (see
Section 3.3). Section 3.1 focuses on all-reduce decom-
position, and Section 3.2 formally presents BlueConnect
with the performance model given in Section 3.3.

3.1 All-Reduce Decomposition

BlueConnect decomposes all-reduce to fit into het-
erogeneous network hierarchy and increase the hard-
ware utilization. One well-known way of decomposing
all-reduce is to use reduce-scatter followed by
all-gather which are popularly implemented based on
the ring scheme. Such crude decomposition has neither

All-Reduce

Reduce-Scatter All-Gather
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Reduce-Scatter

Reduce-Scatter

Reduce-Scatter
.
. P/p0

Reduce-Scatter

Reduce-Scatter
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All-Gather

All-Gather

All-Gather

All-Gather
.
. P/pi

All-Gather

All-Gather

All-Gather

All-Gather
.
. P/p0

Figure 3. All-reduce can be decomposed into multiple stages of
parallelizable reduce-scatter and all-gather operations.

granularity nor flexibility sufficient enough to utilize the
underlying hardware and the highly optimized implemen-
tations (i.e., ones offered by the hardware vendors) effi-
ciently. We, however, found that the reduce-scatter
and all-gather can be further decomposed into mul-
tiple stages of parallelizable reduce-scatter and
all-gather operations in some symmetric cases. In
detail, Fig. 3 shows that all-reduce can be first broken
into one reduce-scatter followed by all-gather
(the arrows indicate dependency). However, additional de-
composition is possible if the following integer factorization
exists:

|P | = p0p1p2...pk =
∏
i<k

pi (pi ∈ N, pi > 1) (8)

Then, the reduce-scatter can be further decomposed
into k − 1 stages of bundled reduce-scatter opera-
tions where the i-th stage has P

pi
concurrently launchable

reduce-scatter operations over different subsets of
learners. The all-gather can also be further decom-
posed in the same way, but they have a backward depen-
dency. If all-reduce is performed based on the pro-
posed decomposition, every learner participates in one of
the reduce-scatter or all-gather operations at
any moment or stage (unlike the two-step approach). The
strength of the proposed decomposition are two-fold:

• Decomposition can offer enough granularity and flex-
ibility to map operations to underlying network ele-
ments and implementations.

• Higher parallelism at each stage can increase the band-
width utilization (Sivakumar et al., 2000; Yildirim et al.,
2016).

BlueConnect is essentially based on the proposed
all-reduce decomposition in order to exploit network
topology and corresponding software stacks better.
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Figure 4. BlueConnect reduce-scatter example for 12 GPUs with |P | = p0p1p2 where p0 = 3, p1 = 2, and p2 = 2. The reverse
steps with all-gather shall be taken to complete all-reduce.

3.2 Algorithm

In this section, we describe BlueConnect algorithm. The key
idea in BlueConnect is to decompose the synchronization
or all-reduce of gradients across all learners into mul-
tiple/concurrent reduce-scatter and all-gather
operations based on Section 3.1, then map them to the
under-lying network fabrics. Therefore, BlueConnect has a
decomposition step which can be done offline based on the
network topology as in Section 3.2.1 and all-reduce

step which shall be executed online following the decompo-
sition as in Section 3.2.2. The pseudo code of BlueConnect
on a learner is presented and explained in Section 3.2.3.

3.2.1 Decomposition

While all-reduce can be decomposed into various
ways, BlueConnect does so to optimize against the network
topology. First, BlueConnect decomposes all-reduce
into the same number of reduce-scatter and
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all-gather stages as the number of network hierarchy
levels (i.e., k in Eq. (8)). Then, the amount of parallelism
in each stage is determined by the number of elements in
each network hierarchy level. Fig. 4 (a) shows an example
where BlueConnect decomposes |P | = p0p1p2 = 3× 2× 2
mapping to w0, w1, and w2 respectively for Fig. 1, because
there are 3 GPUs within a node, forming a binary tree. This
way, BlueConnect can avoid the bandwidth bottleneck in
the ring-based scheme (see Eq. (5)). Note that arrays to
all-reduce are partitioned and notated as G[a − b].c
which represents a partially reduced result over the learners
from a to b (inclusive) at the partition index c in Fig. 1.
For example, G[00− 05].05 represents the reduced results
across the learners {0, 1, 2, 3, 4, 5} with respect to the parti-
tion index 5.

3.2.2 All-Reduce

Once decomposition is completed, BlueConnect executes
reduce-scatter and all-gather operations on var-
ious partitions of the input data, in a MPI-compliant man-
ner, which will be explained in Section 3.2.3. Considering
all-reduce for Fig. 1, BlueConnect performs the fol-
lowing steps:

Fig. 4 (b): Four reduce-scatter operations are per-
formed concurrently with w0 and within a node. Note
that data size for each instance is N .

Fig. 4 (c): Six short reduce-scatter operations are
performed concurrently with w1. A{0,1,2} → B{0,1,2}
run over s1.0, while C{0,1,2} → D{0,1,2} run over s1.1,
all concurrently. Note that data size for each instance
is N

3 .

Fig. 4 (d): Six independent reduce-scatter opera-
tions, A{0,1,2} → C{0,1,2} and B{0,1,2} → D{0,1,2}
are performed concurrently over s2.0 with w2, yet the
data size for each instance is only N

6 .

Fig. 4 (e): All the reduce-scatter stages are com-
pleted, and the reduced gradients are evenly distributed.
all-gather will begin in the exactly same but re-
verse order to complete all-reduce.

As in Fig. 4, BlueConnect fully leverages the heterogeneous
network bandwidths with inexpensive multiple/concurrent
reduce-scatter and all-gather operations. Blue-
Connect distributes data over all available nodes, which
provides the following key differences from the two-level
scheme:

• BlueConnect decomposes P according to the network
topology and hierarchy. The goal of such decomposi-
tion is to keep traffic within each switch level as much

as possible, in order to reduce the hop count and maxi-
mize the bandwidth utilization on each switch.

• BlueConnect reduces the latency overhead through de-
composition. Such decomposition in BlueConnect also
enables to use recursive halving/double approaches
for non-power-of-two |P |. For example, if |P | = 96,
the two-level approaches cannot use recursive halv-
ing/double (without expensive preprocessing), but
BlueConnect can decompose into |P | = 16×6 and use
recursive methods for the first reduce-scatter
and the last all-gather stages to further reduce
latencies.

• BlueConnect runs multiple ring communication pat-
terns over a single link, maximizing bandwidth uti-
lization (Sivakumar et al., 2000; Yildirim et al., 2016).
A{0,1,2} → B{0,1,2} run overw1 concurrently in Fig. 4
(a). Such multiple parallel rings easily sustain full link
utilization, leaving no idle time. We found BlueCon-
nect hit the near-theoretical bandwidth limit in most
cases, while a single ring does not.

• The multiple ring patterns in BlueConnect obviously
require learners to share switches. In Fig. 4 (a), six dis-
joint sets of ring communication patterns, A{0,1,2} →
C{0,1,2} and B{0,1,2} → D{0,1,2} share s2.0, leaving
w2

6 to each stream. Such reduced bandwidth per stream
is compensated by the reduced amount of data to trans-
fer (i.e., N

6 ). Since BlueConnect exercises all learners
at any moment and each learner sends data to a single
leaner, we can easily compute the bandwidth fraction
for each ring by dividing the bandwidth by the number
of learners under the corresponding network hierarchy
(e.g., w1

3 and w2

6 ).

3.2.3 Pseudo Code

In this section, we describe BlueConnect in Algorithm 1
and its implementation details in the MPI context. Algo-
rithm 1 assumes that topology-aware decomposition can be
described by a utility like the rank file (OpenMPI) so that
|P | has been decomposed according to W . Then for a given
gradient G[N ] and a global rank r (MPI-Tutorial), Blue-
Connect performs the one-time preparation step in lines 2-5.
For a network switch type i, line 3 obtains a set of learn-
ers which will work with a local learner r over different
bandwidths. For instance, c(A1, w0) = {A0, A1, A2} yet
c(A1, w1) = {A1, B1} in Fig. 4 (a). Then, line 4 computes
the local rank of the current learner r among c[i]. As de-
scribed in Fig. 4, BlueConnect performs a series of concur-
rent reduce-scatter followed by all-gather col-
lectives which is in lines 7-16. Both reduce-scatter
and all-gather operate on G[g : g + N

n ) on a commu-
nicator c[i]. While moving up the network topology, the
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Tblc = 2Tr/c(p0, N, α,w0) + 2Tr/c(p1,
N

p0
, α,min{w0,

w1

p0
}) + 2Tr/c(p2,

N

p0p1
, α,min{w0,

w1

p0
,
w2

p0p1
})

+ ...+ 2Tr/c(p|W |−1,
N∏|W |−2

j=0 pj
, α, min

0≤j<|W |
{ wj∏j−1

k=0 pk
})

= 2

|W |−1∑
i=0

Tr/c(pi,
N∏i−1
j=0 pj

, α, min
0≤j<i

{ wj∏j−1
k=0 pk

}) (9)

size of the reduce-scatter problem decreases with a
growing n, and the gradient offset g is adjusted accord-
ingly. Then, in the reverse order as in line 12, the size of
the all-gather problem grows with a decreasing n, and
the gradient offset g is adjusted accordingly as well. Since
Algorithm 1 is for one learner and all other learners perform
the same procedure with a different global rank r, BlueCon-
nect keeps all learners busy and leaves no idle hosts unlike
the two-level scheme.

3.3 Performance Model

Assume topology-aware decomposition P =
∏|W |−1

j=0 pj
for a fat-tree like topology as in Fig. 1. The performance
model of BlueConnect can be stated as in Eq. (9). We can
easily prove that BlueConnect offers smaller latency than
the two-level scheme in Eq. (7).

We also show a BlueConnect performance model on torus
topology which is another popular network topology and
could be cheaper than fat-tree scheme (Solnushkin, 2013).
The key advantage of using BlueConnect on torus is that it
would reduce the bandwidth sharing on inter-node commu-
nication, as torus has dedicated connections between hosts.
Assuming p0 is the number of learners within a node, we

Algorithm 1 BlueConnect(G[N ], P =
∏|W |−1

j=0 pj)

1: r = global-rank()
2: for i ∈ 0 : |W | − 1 do
3: c [i] = c(r, wi)
4: l [i] = local-rank(r, c[i])
5: end for
6: n = 1, g = 0
7: for i ∈ 0 : |W | − 1 do
8: reduce-scatter(g, Nn , c[i])
9: n = n× pi

10: g = g + N
n l[i]

11: end for
12: for i ∈ |W | − 1 : 0 do
13: n = n÷ pi
14: g = g − N

n l[i]

15: all-gather(g, Nn , c[i])
16: end for

can obtain the following BlueConnect performance model
on torus.

Tblc =2

|W |−1∑
i=0

Tr/c(pi,
N∏i−1
j=0 pj

, α, min
1≤j<i

{w0, wj

p0
})

(10)

Note that Eq. (6, 7) are still valid on torus, as both run a
single communication stream which will be bottlenecked by
the most narrow bandwidth.

3.4 Limitations

BlueConnect highly relies on all-reduce decomposi-
tion, thus if there is no feasible case for Eq (8), BlueCon-
nect gets degenerated into a simple one-level ring scheme.
However, considering the reality that all the hosts have the
same number of GPUs over a symmetric network topology
in most cases, BlueConnect can deliver high-performance
all-reduce in practice.

4 EXPERIMENTAL RESULTS

We implemented BlueConnect (BLC) for GPU in C++
based on CUDA-aware MPI (IBM, 2017b) and NCCL ver.
2 (NVidia, 2017a) (without using all-reduce APIs ) to
exchange gradients efficiently. BLC picks the best perform-
ing reduce-scatter and all-gather implementa-
tion directly from MPI and NCCL, or from custom imple-
mentations. We performed two sets of experiments to study
the efficiency of BLC.

4.1 BLC compared with NCCL2

In this section, we report the pure all-reduce per-
formance comparison between BLC and NCCL (i.e., nc-
clAllReduce) on two different setups. In one setup, we used
two Intel Xeon(R) CPU E5-2680 systems with 4 Nvidia
Telsa P100-PCIE-16GB GPUs each, connected through
10Gbps Ethernet. Within the Intel systems, the GPUs
are connected through PCIe gen3. In the other setup, we
used two IBM S822LC systems with 4 NVidia Tesla P100-
SXM2 GPUs each, connected through 100Gbps InfiniBand.
Within the IBM systems, the GPUs are connected through
NVLink (IBM, 2017a; NVLink, 2017). Fig. 5 shows that
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Figure 5. All-reduce performance on two systems.

BLC outperforms NCCL by exploiting the network hier-
archy within systems as well as between systems on both
setups, over a wide range of FP32 floating-point number
counts. Thanks to the faster network in the IBM platform,
both BLC and NCCL perform about 10x faster than the
Intel platform, but BLC is about 1.6x faster than NCCL on
both cases.

4.2 BLC integrated in Caffe2

Our BLC implementation is packaged as a new communi-
cation operator for Caffe2 (Facebook, a), following exist-
ing communication operator implementation. To evaluate
the performance of BLC, we used a cluster of 48 IBM
S822LC systems on Red Hat Enterprise Linux with cuDNN,
each equipped with 4 NVidia Tesla P100-SXM2 GPUs con-
nected through NVLink (IBM, 2017a; NVLink, 2017). The
systems were organized into 3 racks with 16 nodes each,
connected via a single-port 100Gbs InfiniBand network.
Each rack was equipped with a rack switch that was con-
nected to a director switch. ImageNet-1K benchmark has
been preloaded onto RAM Disk on each system to prevent
performance degradation due to disk I/O. We compared
BLC with the following deep learning communication tech-
niques/libraries under the identical environment:

MPI Allreduce all-reduce function in MPI (Thakur
et al., 2005) which is optimized for generic communi-
cation of various sizes/topologies.

Ring Single-level ring-based all-reduce algorithm as
in (Baidu, 2017), designed for deep learning.

GLOO Two-level all-reduce algorithm in (Facebook,
b; Jia et al., 2018), designed for deep learning based
on NCCL (NVidia, 2017a) and ib verb.

We used Resnet-50 (Goyal et al., 2017; He et al., 2015) and
ImageNet-1K to measure scaling efficiency and communica-
tion overheads for 4 GPUs, 8 GPUs, up to 192 GPUs, while
maintaining a fixed batch size of 32 per GPU (e.g., the effec-
tive batch size is 6144 at 192 GPUs). We found that Resnet-
50 has about 100MB of gradients in FP32. Since (Goyal
et al., 2017; You et al., 2017a) has demonstrated successful
convergence to best accuracy for the batch size of 8192, the
scaling efficiency number is meaningful. We do not focus
on the convergence/accuracy in this paper, as all three tech-
niques compute all reduce results synchronously and
accurately. Nevertheless, we confirmed that our BLC inte-
gration into Caffe2 does not alter the convergence behavior
through several tests.

We present our results in Fig. 6 without MPI Allreduce
results (due to its poor performance beyond 32 GPUs).
To accurately measure the communication overhead (ac-
tual all reduce time, interface-overhead to Caffe2, jitter
from network/OS/GPU-scheduling, required memory copy,
and so on), we first measure the single-GPU performance
which is 163.0 msec per iteration or 196.3 images/sec. Our
experimental results in Fig. 6 are summarized as follows:

• (a) plots the overall communication overhead per it-
eration over various GPU counts. We subtracted the
baseline number (163.0 msec as mentioned above) to
capture the total communication overhead reliably and
comprehensively. With 4 GPUs (which are all in a sin-
gle node), BLC and GLOO show similar performance
because both simply use NCCL (while Ring does not).
However, BLC incurs less communication overhead
with more GPUs.

• The communication overhead in (a) for BLC on 192
GPUs is about 31.0 msec where the jitter accounts for
5-10 msec. GLOO scales much better than Ring, but
BLC offers the best scaling overall, with about 87%
reduction in communication overhead over GLOO on
192 GPUs (58.0 vs 31.0 msec). If we assume the jitter
is 5 msec, then the actual communication overhead
improvement of BLC over GLOO is about 2× on 192
GPUs.
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Figure 6. Training performance comparison over 192 GPUs

• (b) highlights how communication overhead impacts
the scaling efficiency, one of the key metrics in large-
scale deep learning. Note that our scaling efficiency is
compared with respect to a single-GPU performance,
instead of a single-node performance (Goyal et al.,
2017). It shows that BLC scales best due to efficient
synchronization in SGD. Ring scales worst, keeping
GPUs idle for an extended period; it wastes 48% of
GPU computing power on 192 GPUs (equivalent to 92
GPUs).

• (c) shows that BLC delivers the best images/sec
throughput over other communication techniques. On
192 GPUs, BLC delivers 11% higher throughput than
GLOO, and 45% higher throughput than Ring.

• (d) presents the projected throughput with FP16 on
the future generation GPUs (i.e., Ampere GPUs) by
scaling down the single-GPU performance by 4.8 (2x
faster than Volta GPUs (NVidia, 2017b)) and cutting
the communication overhead by half. It indicates that

the throughput gap between BLC and others would get
wider (e.g., from 11% to 22% on 192 GPUs compared
with GLOO), supporting our claim that a faster com-
munication algorithm is crucial for deep learning on
more powerful computing resources.

5 CONCLUSION AND FUTURE WORK

We have proposed BlueConnect, an efficient communica-
tion library for training complex deep neural networks with
a large number of GPUs, thus offering a viable strategy
to reduce training time from weeks to hours. Such rapid
turn around can accelerate the improvement of existing
neural networks and design of new neural networks, and
exploration of new application domains. To proliferate this
technology to the masses, more research needs to be done,
because massive GPU scaling relies on successful training
to good accuracy for large batch size. Prior techniques such
as (Goyal et al., 2017; You et al., 2017a) have been demon-
strated on some neural network types, but we need to extend
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it to other popular neural network types, in particular, recur-
rent neural networks. The whole training has to be made
resilient and elastic since it is very likely that some devices
will malfunction when the number of devices increases. Au-
tomation and usability issues have to be addressed to enable
more turnkey operation, especially in a cloud environment.
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