
YELLOWFIN AND THE ART OF MOMENTUM TUNING

Jian Zhang 1 Ioannis Mitliagkas 2

ABSTRACT
Hyperparameter tuning is one of the most time-consuming workloads in deep learning. State-of-the-art optimizers,
such as AdaGrad, RMSProp and Adam, reduce this labor by adaptively tuning an individual learning rate for each
variable. Recently researchers have shown renewed interest in simpler methods like momentum SGD as they may
yield better test metrics. Motivated by this trend, we ask: can simple adaptive methods based on SGD perform as
well or better? We revisit the momentum SGD algorithm and show that hand-tuning a single learning rate and
momentum makes it competitive with Adam. We then analyze its robustness to learning rate misspecification and
objective curvature variation. Based on these insights, we design YELLOWFIN, an automatic tuner for momentum
and learning rate in SGD. YELLOWFIN optionally uses a negative-feedback loop to compensate for the momentum
dynamics in asynchronous settings on the fly. We empirically show that YELLOWFIN can converge in fewer
iterations than Adam on ResNets and LSTMs for image recognition, language modeling and constituency parsing,
with a speedup of up to 3.28x in synchronous and up to 2.69x in asynchronous settings.

1 INTRODUCTION

Accelerated forms of stochastic gradient descent (SGD),
pioneered by Polyak (1964) and Nesterov (1983), are the
de-facto training algorithms for deep learning. Their use
requires a sane choice for their hyperparameters: typically
a learning rate and momentum parameter (Sutskever et al.,
2013). However, tuning hyperparameters is arguably the
most time-consuming part of deep learning, with many pa-
pers outlining best tuning practices written (Bengio, 2012;
Orr & Müller, 2003; Bengio et al., 2012; Bottou, 2012).
Deep learning researchers have proposed a number of meth-
ods to deal with hyperparameter optimization, ranging from
grid-search and smart black-box methods (Bergstra & Ben-
gio, 2012; Snoek et al., 2012) to adaptive optimizers. Adap-
tive optimizers aim to eliminate hyperparameter search by
tuning on the fly for a single training run: algorithms like
AdaGrad (Duchi et al., 2011), RMSProp (Tieleman & Hin-
ton, 2012) and Adam (Kingma & Ba, 2014) use the magni-
tude of gradient elements to tune learning rates individually
for each variable and have been largely successful in reliev-
ing practitioners of tuning the learning rate.

Recently some researchers have started favoring simple mo-
mentum SGD over the previously mentioned adaptive meth-
ods (Chen et al., 2016; Gehring et al., 2017), often reporting

1Computer Science Department, Stanford University, CA,
USA. 2Mila, University of Montréal, Canada CIFAR AI Chair.
Correspondence to: Jian Zhang <zjian@stanford.edu>, Ioannis
Mitliagkas <ioannis@iro.umontreal.ca>.

Proceedings of the 2nd SysML Conference, Palo Alto, CA, USA,
2019. Copyright 2019 by the author(s).

0k 30k 60k 90k 120k
Iterations

100

101

T
ra

in
in

g
lo

ss

Synchronous training
Adam
YellowFin

0k 30k 60k 90k 120k
Iterations

100

101 Asynchronous training
Adam
YellowFin
Closed-loop
YellowFin

Figure 1. YELLOWFIN in comparison to Adam on a ResNet (CI-
FAR100, cf. Section 5) in synchronous and asynchronous settings.

better test scores (Wilson et al., 2017). Motivated by this
trend, we ask the question: can simpler adaptive methods
based on momentum SGD perform as well or better? We
empirically show, with a hand-tuned learning rate, Polyak’s
momentum SGD achieves faster convergence than Adam for
a large class of models. We then formulate the optimization
update as a dynamical system and study certain robustness
properties of the momentum operator. Inspired by our anal-
ysis, we design YELLOWFIN, an automatic hyperparameter
tuner for momentum SGD. YELLOWFIN simultaneously
tunes the learning rate and momentum on the fly, and can
handle the complex dynamics of asynchronous execution.
Our contribution and outline are as follows:

• In Section 2, we demonstrate examples where momen-
tum offers convergence robust to learning rate mis-
specification and curvature variation in a class of non-
convex objectives. This robustness is desirable for deep
learning. It stems from a known but obscure fact: the
momentum operator’s spectral radius is constant in a
large subset of the hyperparameter space.

YELLOWFIN and the Art of Momentum Tuning

• In Section 3, we use these robustness insights and a
simple quadratic model analysis to motivate the design
of YELLOWFIN, an automatic tuner for momentum
SGD. YELLOWFIN uses on-the-fly measurements from
the gradients to tune both a single learning rate and a
single momentum.

• In Section 3.3, we discuss common stability concerns
related to the phenomenon of exploding gradients (Pas-
canu et al., 2013). We present a natural extension to
our basic tuner, using adaptive gradient clipping, to sta-
bilize training for objectives with exploding gradients.

• In Section 4 we present closed-loop YELLOWFIN,
suited for asynchronous training. It uses a novel com-
ponent for measuring the total momentum in a running
system, including any asynchrony-induced momentum,
a phenomenon described in (Mitliagkas et al., 2016).
This measurement is used in a negative feedback loop
to control the value of algorithmic momentum.

We provide a thorough empirical evaluation of the perfor-
mance and stability of our tuner. In Section 5, we demon-
strate empirically that on ResNets and LSTMs YELLOWFIN
can converge in fewer iterations compared to: (i) hand-tuned
momentum SGD (up to 1.75x speedup); and (ii) hand-tuned
Adam (0.77x to 3.28x speedup). Under asynchrony, the
closed-loop control architecture speeds up YELLOWFIN,
making it up to 2.69x faster than Adam. Our experiments in-
clude runs on 7 different models, randomized over at least 3
different random seeds. YELLOWFIN is stable and achieves
consistent performance: the normalized sample standard
deviation of test metrics varies from 0.05% to 0.6%. We re-
leased PyTorch and TensorFlow implementations 1that can
be used as drop-in replacements for any optimizer. YEL-
LOWFIN has also been implemented in various other pack-
ages. Its large-scale deployment in industry has taught us
important lessons about stability; we discuss those chal-
lenges and our solution in Section 3.3. We conclude with
related work and discussion in Section 6 and 7.

Our goal is to explore the value of moment adaptation for
SGD and provide a prototype, efficient tuner achieving this.
While we report state-of-the-art performance results in some
tasks, we do not claim that on-the-fly momentum adaptation
is a necessary feature of a well-performing synchronous sys-
tem. In Section 5.1 we demonstrate that a simple variation
of YELLOWFIN, only using the momentum value to further
rescale the step size, can yield an adaptive step size method
that performs almost as well in some cases.

2 THE MOMENTUM OPERATOR

In this section, we identify the main technical insight be-
hind the design of our tuner: gradient descent with mo-

1TensorFlow: goo.gl/zC2rjG. PyTorch: goo.gl/N4sFfs

mentum can exhibit linear convergence robust to learning
rate misspecification and to curvature variation. The robust-
ness to learning rate misspecification means tolerance to a
less-carefully-tuned learning rate. On the other hand, the
robustness to curvature variation means empirical linear con-
vergence on a class of non-convex objectives with varying
curvatures. After preliminary on momentum, we discuss
these two properties desirable for deep learning objectives.

2.1 Preliminaries

We aim to minimize some objective f(x). In machine learn-
ing, x is referred to as the model and the objective is some
loss function. A low loss implies a well-fit model. Gradient
descent-based procedures use the gradient of the objective
function, ∇f(x), to update the model iteratively. These
procedures can be characterized by the convergence rate
with respect to the distance to a minimum.
Definition 1 (Convergence rate). Let x∗ be a local minimum
of f(x) and xt denote the model after t steps of an iterative
procedure. The iterates converge to x∗ with linear rate β, if

‖xt − x∗‖ = O(βt‖x0 − x∗‖).

Polyak’s momentum gradient descent (Polyak, 1964) is one
of these iterative procedures, given by

xt+1 = xt − α∇f(xt) + µ(xt − xt−1), (1)

where α denotes a single learning rate and µ a single mo-
mentum for all model variables. Momentum’s main appeal
is its established ability to accelerate convergence (Polyak,
1964). On a γ-strongly convex δ-smooth function with con-
dition number κ = δ/γ, the optimal convergence rate of
gradient descent without momentum is O(κ−1κ+1) (Nesterov,
2013). On the other hand, for certain classes of strongly
convex and smooth functions, like quadratics, the optimal
momentum value,

µ∗ =

(√
κ− 1√
κ+ 1

)2

, (2)

yields the optimal accelerated linear convergence rate
O(
√
κ−1√
κ+1

). This guarantee does not generalize to arbitrary
strongly convex smooth functions (Lessard et al., 2016).
Nonetheless, this linear rate can often be observed in prac-
tice even on non-quadratics (cf. Section 2.2).

Key insight: Consider a quadratic objective with condition
number κ > 1. Even though its curvature is different along
the different directions, Polyak’s momentum gradient de-
scent, with µ ≥ µ∗, achieves the same linear convergence
rate
√
µ along all directions. Specifically, let xi,t and x∗i

be the i-th coordinates of xt and x∗. For any µ ≥ µ∗ with
an appropriate learning rate, the update in (1) can achieve
|xi,t − x∗i | ≤

√
µt|xi,0 − x∗i | simultaneously along all axes

i. This insight has been hidden away in proofs.

YELLOWFIN and the Art of Momentum Tuning

In this quadratic case, curvature is different across different
axes, but remains constant on any one-dimensional slice. In
the next section (Section 2.2), we extend this insight to non-
quadratic one-dimensional functions. We then present the
main technical insight behind the design of YELLOWFIN:
similar linear convergence rate

√
µ can be achieved in a

class of one-dimensional non-convex objectives where cur-
vature varies; this linear convergence behavior is robust to
learning rate misspecification and to the varying curvature.
These robustness properties are behind a tuning rule for
learning rate and momentum in Section 2.2. We extend this
rule to handle SGD noise and generalize it to multidimen-
sional objectives in Section 3.

2.2 Robustness properties of the momentum operator

In this section, we analyze the dynamics of momentum on a
class of one-dimensional, non-convex objectives. We first
introduce the notion of generalized curvature and use it
to describe the momentum operator. Then we discuss the
robustness properties of the momentum operator.

Curvature along different directions is encoded in the dif-
ferent eigenvalues of the Hessian. It is the only feature
of a quadratic needed to characterize the convergence of
gradient descent. Specifically, gradient descent achieves
a linear convergence rate |1 − αhc| on one-dimensional
quadratics with constant curvature hc. On one-dimensional
non-quadratic objectives with varying curvature, this neat
characterization is lost. We can recover it by defining a new
kind of “curvature” with respect to a specific minimum.

Definition 2 (Generalized curvature). Let x∗ be a local
minimum of f(x) : R → R. Generalized curvature with
respect to x∗, denoted by h(x), satisfies the following.

f ′(x) = h(x)(x− x∗). (3)

Generalized curvature describes, in some sense, non-local
curvature with respect to minimum x∗. It coincides with
curvature on quadratics. On non-quadratic objectives, it
characterizes the convergence behavior of gradient descent-
based algorithms. Specifically, we recover the fact that
starting at point xt, the distance from minimum x∗ is re-
duced by |1−αh(xt)| in one step of gradient descent. Using
a state-space augmentation, we can rewrite the momentum
update of (1) as(

xt+1 − x∗
xt − x∗

)
= At

(
xt − x∗
xt−1 − x∗

)
(4)

where the momentum operator At at time t is defined as

At ,

[
1− αh(xt) + µ −µ

1 0

]
(5)

Lemma 3 (Robustness of the momentum operator). As-
sume that generalized curvature h and hyperparameters

α, µ satisfy

(1−√µ)2 ≤ αh(xt) ≤ (1 +
√
µ)2. (6)

Then as proven in Appendix A, the spectral radius of the
momentum operator at step t depends solely on the momen-
tum parameter: ρ(At) =

√
µ, for all t. The inequalities in

(6) define the robust region, the set of learning rate α and
momentum µ achieving this

√
µ spectral radius.

We know that the spectral radius of an operator, A, de-
scribes its asymptotic behavior when applied multiple times:
‖Atx‖ ≈ O(ρ(A)t).2 Unfortunately, the same does not
always hold for the composition of different operators, even
if they have the same spectral radius, ρ(At) =

√
µ. It is

not always true that ‖At · · ·A1x‖ = O(
√
µt). However,

a homogeneous spectral radius often yields the
√
µt rate

empirically. In other words, this linear convergence rate is
not guaranteed. Instead, we demonstrate examples to ex-
pose the robustness properties: if the learning rate α and
momentum µ are in the robust region, the homogeneity of
spectral radii can empirically yield linear convergence with
rate
√
µ; this behavior is robust with respect to learning

rate misspecification and to varying curvature.

Momentum is robust to learning rate misspecification
For a one-dimensional quadratic with curvature h, we have
generalized curvature h(x) = h for all x. Lemma 3 implies
the spectral radius ρ(At)=

√
µ if

(1−√µ)2/h ≤ α ≤ (1 +
√
µ)2/h. (7)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Learning rate (α)

0.0

0.2

0.4

0.6

0.8

1.0
Sp

ec
tr

al
ra

di
us

µ = 0.0

µ = 0.1

µ = 0.3

µ = 0.5

Figure 2. Spectral radius of
momentum operator on scalar
quadratic for varying α.

In Figure 2, we plot ρ(At)
for different α and µ when
h = 1. The solid line
segments correspond to the
robust region. As we in-
crease momentum, a linear
rate of convergence,

√
µ, is

robustly achieved by an ever-
widening range of learning
rates: higher values of mo-
mentum are more robust to
learning rate mispecification.

This property influences the design of our tuner: more
generally for a class of one-dimensional non-convex objec-
tives, as long as the learning rate α and momentum µ are in
the robust region, i.e. satisfy (6) at every step, then momen-
tum operators at all steps t have the same spectral radius.
In the case of quadratics, this implies a convergence rate of√
µ, independent of the learning rate. Having established

that, we can just focus on optimally tuning momentum.

2For any ε > 0, there exists a matrix norm ‖ · ‖ such that
‖A‖ ≤ ρ(A) + ε (Foucart, 2012).

YELLOWFIN and the Art of Momentum Tuning

Momentum is robust to varying curvature As dis-
cussed in Section 2.1, the intuition hidden in classic results is
that for certain strongly convex smooth objectives, momen-
tum at least as high as the value in (2) can achieve the same
rate of linear convergence along all axes with different cur-
vatures. We extend this intuition to certain one-dimensional
non-convex functions with varying curvatures along their
domains; we discuss the generalization to multidimensional
cases in Section 3.1. Lemma 3 guarantees constant, time-
homogeneous spectral radii for momentum operators At

assuming (6) is satisfied at every step. This assumption mo-
tivates a “long-range” extension of the condition number.
Definition 4 (Generalized condition number). We define the
generalized condition number (GCN) with respect to a local
minimum x∗ of a scalar function, f(x) : R→ R, to be the
dynamic range of its generalized curvature h(x):

ν =
supx∈dom(f) h(x)

infx∈dom(f) h(x)
(8)

The GCN captures variations in generalized curvature along
a scalar slice. From Lemma 3 we get

µ ≥ µ∗ =
(√

ν − 1√
ν + 1

)2

,

(1−√µ)2
infx∈dom(f) h(x)

≤ α ≤ (1 +
√
µ)2

supx∈dom(f) h(x)

(9)

as the description of the robust region. The momentum and
learning rate satisfying (9) guarantees a homogeneous spec-
tral radius of

√
µ for all At. Specifically, µ∗ is the smallest

momentum value that allows for homogeneous spectral radii.
Similar to the optimal µ∗ in (2) for the quadratic case, we
notice that the optimal µ in (9) is objective dependent. The
optimal momentum µ∗ is close to 1 for objectives with large
generalized condition number ν, while objectives with small
ν implies a optimal momentum µ∗ that is close to 0.

We demonstrate with examples that by using a momentum
larger than the objective-dependent µ∗, homogeneous spec-
tral radii suggest an empirical linear convergence behavior
on a class of non-convex objectives. In Figure 3(a), the
non-convex objective, composed of two quadratics with
curvatures 1 and 1000, has a GCN of 1000. Using the tun-
ing rule of (9), and running the momentum algorithm (Fig-
ure 3(b)) practically yields the linear convergence predicted
by Lemma 3. In Figures 3(c,d), we demonstrate an LSTM
as another example. As we increase the momentum value
(the same value for all variables in the model), more model
variables follow a

√
µ convergence rate. In these examples,

the linear convergence is robust to the varying curvature
of the objectives. This property influences our tuner de-
sign: in the next section, we extend the tuning rules of (9)
to handle SGD noise; we generalize the extended rule to
multidimensional cases as the tuning rule in YELLOWFIN.

The role of generalized curvature. GC defines a quan-
tity that is an alternative to classic curvature and is directly
related to the contraction properties of the momentum op-
erator on non-quadratic scalar problems. Note that similar
quantities, e.g. the PL condition (Karimi et al., 2016), have
been used in the analysis of gradient descent. The gener-
alized condition number (GCN) is meant to describe the
dynamic range of this contractivity around a minumum on
non-quadratic function.

3 THE YELLOWFIN TUNER

Here we describe our tuner for momentum SGD that uses
the same learning rate for all variables. We first introduce a
noisy quadratic model f(x) as the local approximation of an
arbitrary one-dimensional objective. On this approximation,
we extend the tuning rule of (9) to SGD. In section 3.1, we
generalize the discussion to multidimensional objectives; it
yields the YELLOWFIN tuning rule.

Noisy quadratic model We consider a scalar quadratic

f(x) =
h

2
x2+C =

∑
i

h

2n
(x−ci)2 ,

1

n

∑
i

fi(x) (10)

with
∑
i ci = 0. f(x) is a quadratic approximation of the

original objectives with h and C derived from measurement
on the original objective. The function f(x) is defined as
the average of n component functions, fi. This is a common
model for SGD, where we use only a single data point (or
a mini-batch) drawn uniformly at random, St ∼ Uni([n])
to compute a noisy gradient, ∇fSt(x), for step t. Here,
C = 1

2n

∑
i hc

2
i denotes the gradient variance. As opti-

mization on quadratics decomposes into scalar problems
along the principal eigenvectors of the Hessian, the scalar
model in (10) is sufficient to study local quadratic approx-
imations of multidimensional objectives. Next we get an
exact expression for the mean square error after running
momentum SGD on the scalar quadratic in (10) for t steps
in Lemma 5; we delay the proof to Appendix B.
Lemma 5. Let f(x) be defined as in (10), x1 = x0 and
xt follow the momentum update (1) with stochastic gra-
dients ∇fSt(xt−1) for t ≥ 2. Let e1 = [1, 0]T and
f 1 = [1, 0, 0]T , the expectation of squared distance to the
optimum x∗ is

E(xt+1 − x∗)2 = (e>1 A
t[x1 − x∗, x0 − x∗]>)2

+ α2Cf >1 (I −B t)(I −B)−1f 1,
(11)

where the first and second term correspond to squared bias
and variance, and their corresponding momentum dynamics
are captured by operators

A =

[
1− αh+ µ −µ

1 0

]
,

B =

(1− αh+ µ)2 µ2 −2µ(1− αh+ µ)
1 0 0

1− αh+ µ 0 −µ

 . (12)

YELLOWFIN and the Art of Momentum Tuning

−20−15−10−5 0 5 10 15 20

x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
f

(x
)

0 100 200 300 400 500

Iterations

10−7
10−6
10−5
10−4
10−3
10−2
10−1

100
101
102
103

D
is

ta
nc

e
fr

om
op

ti
m

um

0 50 100 150 200 250 300

Iterations

10−5

10−4

10−3

10−2

10−1

D
is

ta
nc

e
fr

om
fin

al
va

lu
e

µ = 0.9

0 50 100 150 200 250 300

Iterations

µ = 0.99

(a) (b) (c) (d)

Figure 3. (a) Non-convex toy example; (b) linear convergence rate achieved empirically on the example in (a) tuned according to (9);
(c,d) LSTM on MNIST: as momentum increases from 0.9 to 0.99, the global learning rate and momentum falls in robust regions of more
model variables. The convergence behavior (shown in grey) of these variables follow the robust rate

√
µ (shown in red).

Even though it is possible to numerically work on (11) di-
rectly, we use a scalar, asymptotic surrogate in (13) based
on the spectral radii of operators to simplify analysis and
expose insights. This decision is supported by our find-
ings in Section 2: the spectral radii can capture empirical
convergence rate.

E(xt+1 − x∗)2

≈ρ(A)2t(x0 − x∗)2 + (1− ρ(B)t)
α2C

1− ρ(B)

(13)

One of our design decisions for YELLOWFIN is to always
work in the robust region of Lemma 3. We know that this
implies a spectral radius

√
µ of the momentum operator, A,

for the bias. Lemma 6, as proved in Appendix C, shows that
under the exact same condition, the variance operator B has
spectral radius µ.
Lemma 6. The spectral radius of the variance operator, B
is µ, if (1−√µ)2 ≤ αh ≤ (1 +

√
µ)2.

As a result, the surrogate objective of (13), takes the follow-
ing form in the robust region.

E(xt+1 − x∗)2 ≈ µt(x0 − x∗)2 + (1− µt) α
2C

1− µ (14)

We extend this surrogate to multidimensional cases to ex-
tract a noisy tuning rule for YELLOWFIN.

3.1 Tuning rule
In this section, we present SINGLESTEP, the tuning rule of
YellowFin (Algorithm 1). Based on the surrogate in (14),
SINGLESTEP is a multidimensional SGD version of the
noiseless tuning rule in (9). We first generalize (9) and (14)
to multidimensional cases, and then discuss the rule SIN-
GLESTEP as well as its implementation in Algorithm 1.

As discussed in Section 2.2, GCN ν captures the dynamic
range of generalized curvatures in a one-dimensional ob-
jective with varying curvature. The consequent robust re-
gion described by (9) implies homogeneous spectral radii.

On a multidimensional non-convex objective, each one-
dimensional slice passing a minimum x∗ can have varying
curvature. As we use a single µ and α for the entire model,
if ν simultaneously captures the dynamic range of general-
ized curvature over all these slices, µ and α in (9) are in the
robust region for all these slices. This implies homogeneous
spectral radii

√
µ according to Lemma 3, empirically facili-

tating convergence at a common rate along all the directions.

Given homogeneous spectral radii
√
µ along all directions,

the surrogate in (14) generalizes on the local quadratic ap-
proximation of multiple dimensional objectives. On this ap-
proximation with minimum x∗, the expectation of squared
distance to x∗, E‖x0 − x∗‖2, decomposes into indepen-
dent scalar components along the eigenvectors of the Hes-
sian. We define gradient variance C as the sum of gradient
variance along these eigenvectors. The one-dimensional
surrogates in (14) for the independent components sum to
µt‖x0−x∗‖2+(1−µt)α2C/(1−µ), the multidimensional
surrogate corresponding to the one in (14).

Algorithm 1 YELLOWFIN

function YELLOWFIN(gradient gt, β)
hmax, hmin ← CURVATURERANGE(gt, β)
C ← VARIANCE(gt, β)
D ← DISTANCE(gt, β)
µt, αt ← SINGLESTEP(C,D, hmax, hmin)
return µt, αt

end function

(SINGLESTEP)

µt, αt =argmin
µ
µD2 + α2C

s.t. µ ≥
(√

hmax/hmin − 1√
hmax/hmin + 1

)2

α =
(1−√µ)2
hmin

(15)

Let D be an estimate
of the current model’s
distance to a local
quadratic approxima-
tion’s minimum, and C
denote an estimate for
gradient variance. SIN-
GLESTEP minimizes
the multidimensional
surrogate after a single step (i.e. t = 1) while ensuring

YELLOWFIN and the Art of Momentum Tuning

Algorithm 2 Curvature range
state: hmax, hmin, hi, ∀i ∈ {1, 2, 3, ...}
function CURVATURERANGE(gradient gt, β)

ht ← ‖gt‖2
hmax,t ← max

t−w≤i≤t
hi, hmin,t ← min

t−w≤i≤t
hi

hmax ← β · hmax + (1− β) · hmax,t

hmin ← β · hmin + (1− β) · hmin,t

return hmax, hmin

end function

Algorithm 3 Gradient variance

state: g2 ← 0, g ← 0

function VARIANCE(gradient gt, β)

g2 ← β · g2 + (1− β) · gt � gt
g ← β · g + (1− β) · gt
return 1T·

(
g2 − g2

)
end function

Algorithm 4 Distance to opt.

state: ‖g‖ ← 0, h← 0

function DISTANCE(gradient gt, β)
‖g‖ ← β · ‖g‖+ (1− β) · ‖gt‖
h← β · h+ (1− β) · ‖gt‖2
D ← β ·D + (1− β) · ‖g‖/h
return D

end function

µ and α in the robust region for all directions. A single
instance of SINGLESTEP solves a single momentum
and learning rate for the entire model at each iteration.
Specifically, the extremal curvatures hmin and hmax denote
estimates for the largest and smallest generalized curvature
respectively. They are meant to capture both generalized
curvature variation along all different directions (like the
classic condition number) and also variation that occurs
as the landscape evolves. The constraints keep the global
learning rate and momentum in the robust region (defined
in Lemma 3) for slices along all directions.

The problem in (15) does not need iterative solver but has an
analytical solution. Substituting only the second constraint,
the objective becomes p(x) = x2D2 + (1 − x)4/h2minC
with x =

√
µ ∈ [0, 1). By setting the gradient of p(x) to 0,

we can get a cubic equation whose root x =
√
µp can be

computed in closed form using Vieta’s substitution. As p(x)
is uni-modal in [0, 1), the optimizer for (15) is exactly the
maximum of µp and (

√
hmax/hmin−1)2/(

√
hmax/hmin+

1)2, the right hand-side of the first constraint in (15).

YELLOWFIN uses functions CURVATURERANGE, VARI-
ANCE and DISTANCE to measure quantities hmax, hmin, C
and D respectively. These functions can be designed in
different ways. We present the implementations used in our
experiments, based completely on gradients, in Section 3.2.

3.2 Measurement functions in YELLOWFIN

This section describes our implementation of the measure-
ment oracles used by YELLOWFIN: CURVATURERANGE,
VARIANCE, and DISTANCE. We design the measurement
functions with the assumption of a negative log-probability
objective; this is in line with typical losses in machine learn-
ing, e.g. cross-entropy for neural nets and maximum like-
lihood estimation in general. Under this assumption, the
Fisher information matrix—i.e. the expected outer prod-
uct of noisy gradients—approximates the Hessian of the
objective (Duchi, 2016; Pascanu & Bengio, 2013). This
allows for measurements purely being approximated from
minibatch gradients with overhead linear to model dimen-
sionality. These implementations are not guaranteed to give
accurate measurements. Nonetheless, their use in our ex-
periments in Section 5 shows that they are sufficient for
YELLOWFIN to outperform the state of the art on a variety

of objectives. We also refer to Appendix D for details on
zero-debias (Kingma & Ba, 2014), slow start (Schaul et al.,
2013) and smoothing for curvature range estimation.

Curvature range Let gt be a noisy gradient, we estimate
the curvatures range in Algorithm 2. We notice that the
outer product gtgTt has an eigenvalue ht = ‖gt‖2 with
eigenvector gt. Thus under our negative log-likelihood as-
sumption, we use ht to approximate the curvature of Hes-
sian along gradient direction gt. Note here we use empirical
Fisher gtgTt instead of Fisher information matrix. Empirical
Fisher is typically used in practical natural gradient meth-
ods (Martens, 2014; Roux et al., 2008; Duchi et al., 2011).
For practically efficient measurement, we use the empirical
Fisher as a coarse proxy of Fisher information matrix which
approximates the Hessian of the objective. Specifically in
Algorithm 2, we maintain hmin and hmax as running aver-
ages of extreme curvature hmin,t and hmax,t, from a sliding
window of width 203. As gradient directions evolve, we
estimate curvatures along different directions. Thus hmin

and hmax capture the curvature variations.

Gradient variance To estimate the gradient variance in
Algorithm 3, we use running averages g and g2 to keep track
of gt and gt � gt, the first and second order moment of the
gradient. As Var(gt) = Eg2t − Egt � Egt, we estimate the
gradient variance C in (15) using C = 1T· (g2 − g2).

Distance to optimum We estimate the distance to the op-
timum of the local quadratic approximation in Algorithm 4.
Inspired by the fact that ‖∇f(x)‖ ≤ ‖H ‖‖x − x ?‖ for a
quadratic f(x) with Hessian H and minimizer x ∗, we main-
tain h and ‖g‖ as running mean of curvature ht and gradient
norm ‖gt‖; the distance is approximated with ‖g‖/h.

3.3 Stability on non-smooth objectives

The process of training neural networks is inherently non-
stationary, with the landscape abruptly switching from flat
to steep areas. In particular, the objective functions of
RNNs with hidden units can exhibit occasional but very

3We use window width 20 across all the models and experi-
ments in our paper. We refer to Section 5 for details on selecting
the window width

YELLOWFIN and the Art of Momentum Tuning

0k 1k 2k 3k
Iterations

10−3

100

103

105
G

ra
di

en
t

no
rm

Without clipping
With clipping
Clipping thresh.

0k 1k 2k 3k
Iterations

10−1

100

101

102

T
ra

in
in

g
lo

ss

Without clipping
With clipping

Figure 4. A variation of the LSTM architecture in (Zhu et al., 2016)
exhibits exploding gradients. The proposed adaptive gradient
clipping threshold (blue) stabilizes the training loss.

0k 5k 10k 15k 20k 25k 30k
Iterations

3.5
4

5

6

7

T
ra

in
in

g
lo

ss

YF with clipping
YF without clipping

0k 10k 20k 30k 40k
Iterations

10−1

100

T
ra

in
in

g
lo

ss YF with clipping
YF without clipping

Figure 5. Training losses on PTB LSTM (left) and CIFAR10
ResNet (right) for YellowFin with and without adaptive clipping.

steep slopes (Pascanu et al., 2013; Szegedy et al., 2013). To
deal with this issue, gradient clipping has been established
in literature as a standard tool to stabilize the training using
such objectives (Pascanu et al., 2013; Goodfellow et al.,
2016; Gehring et al., 2017).

We use adaptive gradient clipping heuristics as a very natu-
ral addition to our basic tuner. However, the classic tradeoff
between adaptivity and stability applies: setting a clipping
threshold that is too low can hurt performance; setting it
to be high, can compromise stability. YELLOWFIN, keeps
running estimates of extremal gradient magnitude squares,
hmax and hmin in order to estimate a generalized condition
number. We posit that

√
hmax is an ideal gradient norm

threshold for adaptive clipping. In order to ensure robust-
ness to extreme gradient spikes, like the ones in Figure 4,
we also limit the growth rate of the envelope hmax in Algo-
rithm 2 as follows:

hmax ← β · hmax + (1− β) ·min {hmax,t, 100 · hmax}
(16)

Our heuristics follows along the lines of classic recipes
like (Pascanu et al., 2013). However, instead of using the
average gradient norm to clip, it uses a running estimate of
the maximum norm hmax. In Figure 4, we demonstrate the
mechanism of our heuristic by presenting an example of an
LSTM that exhibits ’exploding gradients’. The proposed
adaptive clipping can stabilize the training process using
YELLOWFIN and prevent large catastrophic loss spikes.

We validate the proposed adaptive clipping on the convolu-
tional sequence to sequence learning model (Gehring et al.,
2017) for IWSLT 2014 German-English translation. The de-

fault optimizer (Gehring et al., 2017) uses learning rate 0.25
and Nesterov’s momentum 0.99, diverging to loss overflow
due to ’exploding gradient’. It requires, as in Gehring et al.
(2017), strict manually set gradient norm threshold 0.1 to
stabilize. In Table 1, we can see YellowFin, with adaptive
clipping, outperforms the default optimizer using manually
set clipping, with 0.84 higher validation BLEU4 after 120
epochs. To further demonstrate the practical applicability
of our gradient clipping heuristics, in Figure 5, we demon-
strate that the adaptive clipping does not hurt performance
on models that do not exhibit instabilities without clipping.
Specifically, for both PTB LSTM and CIFAR10 ResNet, the
difference between YELLOWFIN with and without adaptive
clipping diminishes quickly.

4 CLOSED-LOOP YELLOWFIN

Table 1. German-English trans-
lation validation metrics using
convolutional seq-to-seq model.

Loss BLEU4

Default w/o clip. diverge
Default w/ clip. 2.86 30.75

YF 2.75 31.59

Asynchrony is a paral-
lelization technique that
avoids synchronization
barriers (Niu et al., 2011).
In this section, we propose
a closed momentum loop
variant of YELLOWFIN
to accelerate convergence
in asynchronous training.
After some preliminaries, we show the mechanism of the
extension: it measures the dynamics on a running system
and controls momentum with a negative feedback loop.

Preliminaries When training on M asynchronous work-
ers, staleness (the number of model updates between a
worker’s read and write operations) is on average τ =M−1,
i.e., the gradient in the SGD update is delayed by τ itera-
tions as ∇fSt−τ (xt−τ). Asynchrony yields faster steps,
but can increase the number of iterations to achieve the
same solution, a tradeoff between hardware and statistical
efficiency (Zhang & Ré, 2014). Mitliagkas et al. (2016) in-
terpret asynchrony as added momentum dynamics. Experi-
ments in Hadjis et al. (2016) support this finding, and demon-
strate that reducing algorithmic momentum can compensate
for asynchrony-induced momentum and significantly reduce
the number of iterations for convergence. Motivated by that
result, we use the model in (17), where the total momen-
tum, µT , includes both asynchrony-induced and algorithmic
momentum, µ, in (1).

E[xt+1 − xt] = µTE[xt − xt−1]− αE∇f(xt) (17)

We will use this expression to design an estimator for the
value of total momentum, µ̂T . This estimator is a basic
building block of closed-loop YELLOWFIN; it removes the
need to manually compensate for the effects of asynchrony.

YELLOWFIN and the Art of Momentum Tuning

0k 5k 10k 15k 20k 25k 30k 35k 40k
Iterations

�0.2

0.0

0.2

0.4

0.6

0.8
M

om
en

tu
m

Total mom.
Target mom.

0k 5k 10k 15k 20k 25k 30k 35k 40k
Iterations

�0.2

0.0

0.2

0.4

0.6

0.8

Total mom.
Target mom.

0k 5k 10k 15k 20k 25k 30k 35k 40k
Iterations

�0.2

0.0

0.2

0.4

0.6

0.8

Total mom.
Target mom.
Algorithmic mom.

Asynchrony
-induced momentum

Figure 6. When running YELLOWFIN, total momentum µ̂t equals algorithmic value in synchronous settings (left); µ̂t is greater than
algorithmic value on 16 asynchronous workers (middle). Closed-loop YELLOWFIN automatically lowers algorithmic momentum and
brings total momentum to match the target value (right). Red dots are total momentum estimates, µ̂T , at each iteration. The solid red line
is a running average of µ̂T .

Measuring the momentum dynamics Closed-loop YEL-
LOWFIN estimates total momentum µT on a running system
and uses a negative feedback loop to adjust algorithmic mo-
mentum accordingly. Equation (18) gives an estimate of µ̂T
on a system with staleness τ , based on (18).

µ̂T = median

(
xt−τ − xt−τ−1 + α∇St−τ−1f(xt−τ−1)

xt−τ−1 − xt−τ−2

)
(18)

We use τ -stale model values to match the staleness of the
gradient, and perform element-wise operations. This way
we get a total momentum measurement from each variable;
the median combines them into a more robust estimate.

Closing the asynchrony loop Given a reliable measure-
ment of µT , we can use it to adjust the value of algorithmic
momentum so that the total momentum matches the tar-
get momentum as decided by YELLOWFIN in Algorithm 1.
Closed-loop YELLOWFIN in Algorithm 5 uses a simple
negative feedback loop to achieve the adjustment.

Algorithm 5 Closed-loop YELLOWFIN

1: Input: µ← 0, α← 0.0001, γ ← 0.01, τ (staleness)
2: for t← 1 to T do
3: xt←xt−1 + µ(xt−1 − xt−2)− α∇Stf(xt−τ−1)
4: µ∗, α← YELLOWFIN(∇Stf(xt−τ−1), β)
5: µ̂T ← median

(
xt−τ−xt−τ−1+α∇St−τ−1

f(xt−τ−1)

xt−τ−1−xt−τ−2

)
. Measuring total momentum

6: µ← µ+ γ · (µ∗ − µ̂T) . Closing the loop
7: end for

5 EXPERIMENTS

We empirically validate the importance of momentum tun-
ing and evaluate YELLOWFIN in both synchronous (single-
node) and asynchronous settings. In synchronous settings,
we first demonstrate that, with hand-tuning, momentum
SGD is competitive with Adam, a state-of-the-art adaptive
method. Then, we evaluate YELLOWFIN without any hand
tuning in comparison to hand-tuned Adam and momentum

SGD. In asynchronous settings, we show that closed-loop
YELLOWFIN accelerates with momentum closed-loop con-
trol, significantly outperforming Adam.

We evaluate on convolutional neural networks (CNN) and
recurrent neural networks (RNN). For CNN, we train
ResNet (He et al., 2016) for image recognition on CIFAR10
and CIFAR100 (Krizhevsky et al., 2014). For RNN, we
train LSTMs for character-level language modeling with the
TinyShakespeare (TS) dataset (Karpathy et al., 2015), word-
level language modeling with the Penn TreeBank (PTB)
(Marcus et al., 1993), and constituency parsing on the Wall
Street Journal (WSJ) dataset (Choe & Charniak). We re-
fer to Table 3 in Appendix E for model specifications. To
eliminate influences of a specific random seed, in our syn-
chronous and asynchronous experiments, the training loss
and validation metrics are averaged from 3 runs using dif-
ferent random seeds. Across all experiments on the eight
models, we use sliding window width 20 for estimating the
extreme curvature hmax and hmin in Algorithm 2. It is
selected based on the performance on PTB LSTM and CI-
FAR10 ResNet model. The selected sliding window width
is directly applied to the other 6 models, including the con-
volutional sequence to sequence model in Section 3.3, as
well as the ResNext and Tied LSTM in Appendix G.3.

5.1 Synchronous experiments

We tune Adam and momentum SGD on learning rate grids
with prescribed momentum 0.9 for SGD. We fix the param-
eters of Algorithm 1 in all experiments, i.e. YELLOWFIN
runs without any hand tuning. We provide full specifica-
tions, including the learning rate (grid) and the number of
iterations we train on each model in Appendix F. For visual-
ization purposes, we smooth training losses with a uniform
window of width 1000. For Adam and momentum SGD on
each model, we pick the configuration achieving the lowest
averaged smoothed loss. To compare two algorithms, we
record the lowest smoothed loss achieved by both. Then the
speedup is reported as the ratio of iterations to achieve this
loss. We use this setup to validate our claims.

YELLOWFIN and the Art of Momentum Tuning

0k 5k 10k 15k 20k

Iterations

1

1.5

2
T

ra
in

in
g

lo
ss YellowFin

YF mom.=0.0
YF mom.=0.9
YF rescaling

0k 30k 60k 90k

Iterations

100

101

T
ra

in
in

g
lo

ss YellowFin
YF mom.=0.0
YF mom.=0.9
YF rescaling

0k 5k 10k 15k 20k

Iterations

1

1.5

2

T
ra

in
in

g
lo

ss Momentum SGD
Vanilla SGD
YellowFin
YF rescaling

Figure 7. The importance of adaptive momentum: The training loss comparison between YELLOWFIN with adaptive momentum and
YELLOWFIN with fixed momentum values; this comparison is conducted on TS LSTM (left) and CIFAR100 ResNet (middle). Learning
rate scaling based on YELLOWFIN tuned momentum can match the performance of full YELLOWFIN on the TS LSTM(right). However
without the YELLOWFIN tuned momentum, hand-tuned Vanilla SGD demonstrates observably larger training loss than momentum based
methods, including full YELLOWFIN, YELLOWFIN learning rate rescaling and hand-tuned momentum SGD (with the same learning rate
search grid as with Vanilla SGD).

Table 2. The speedup of YELLOWFIN and tuned momentum SGD
over tuned Adam on ResNet and LSTM models.

CIFAR10 CIFAR100 PTB TS WSJ

Adam 1x 1x 1x 1x 1x
mom. SGD 1.71x 1.87x 0.88x 2.49x 1.33x

YF 1.93x 1.38x 0.77x 3.28x 2.33x

Momentum SGD is competitive with adaptive methods
In Table 2, we compare tuned momentum SGD and tuned
Adam on ResNets with training losses shown in Figure 9 in
Appendix D. We can observe that momentum SGD achieves
1.71x and 1.87x speedup to tuned Adam on CIFAR10 and
CIFAR100 respectively. In Figure 8 and Table 2, with the
exception of PTB LSTM, momentum SGD also produces
better training loss, as well as better validation perplexity
in language modeling and validation F1 in parsing. For the
parsing task, we also compare with tuned Vanilla SGD and
AdaGrad, which are used in the NLP community. Figure 8
(right) shows that fixed momentum 0.9 can already speedup
Vanilla SGD by 2.73x, achieving better validation F1.

YELLOWFIN can match hand-tuned momentum SGD
and can outperform hand-tuned Adam In our experi-
ments, YELLOWFIN, without any hand-tuning, yields train-
ing loss matching hand-tuned momentum SGD for all the
ResNet and LSTM models in Figure 8 and 9 (Appendix
D). When comparing to tuned Adam in Table 2, except be-
ing slightly slower on PTB LSTM, YELLOWFIN achieves
1.38x to 3.28x speedups in training losses on the other four
models. More importantly, YELLOWFIN consistently shows
better validation metrics than tuned Adam in Figure 8. It
demonstrates that YELLOWFIN can match tuned momen-
tum SGD and outperform tuned state-of-the-art adaptive
optimizers. In Appendix G.3, we show YELLOWFIN further
speeding up with finer-grain manual learning rate tuning.

Importance of adaptive momentum in YELLOWFIN
In Definition 4, we noticed that the optimally tuned µ∗ is
highly objective-dependent. Empirically, we indeed observe
the momentum values chosen by YF range from smaller
than 0.03 in the PTM LSTM to 0.89 for ResNext. We
perform an ablation study to validate the importance of
objective-dependent momentum adaptivity of YELLOWFIN
on CIFAR100 ResNet and TS LSTM. In the experiments,
YELLOWFIN tunes the learning rate. Instead of also using
the momentum tuned by YF, we continuously feed objective-
agnostic prescribed momentum value 0.0 and 0.9 to the un-
derlying momentum SGD optimizer which YF is tuning. In
Figure 7, when comparing to YELLOWFIN with prescribed
momentum 0.0 or 0.9, YELLOWFIN with adaptively tuned
momentum achieves observably faster convergence on both
TS LSTM and CIFAR100 ResNet.

In Figure 8 (bottom right) and Figure 7 (right), we also ob-
serve that hand-tuned vanilla SGD, typically does not match
the performance of momentum based methods (including
YELLOWFIN and momentum SGD hand-tuned using the
same learning rate grid as with vanilla SGD). However,
we can rescale the learning rate based on the YELLOWFIN
tuned momentum µt, and use 0 momentum in the model
updates to match the performance of momentum based meth-
ods. Specifically, we rescale the YELLOWFIN tuned learn-
ing rate αt with 1/(1 − µt)

4. Model updates with this
rescaled learning rate and 0 momentum can demonstrate
training loss closely matching those of YELLOWFIN and
hand-tuned momentum SGD for WSJ LSTM in Figure 8
(bottom right) and TS LSTM in Figure 7 (right).

5.2 Asynchronous experiments

In this section, we evaluate closed-loop YELLOWFIN with
focus on the number of iterations to reach a certain solu-

4Let vt = xt − xt−1 be the model update, this rescaling is
motivated with the fact that vt+1 = µtvt − αt∇f(xt). Assuming
the vt evolves smoothly, we have vt ≈ αt/(1− µt)∇f(xt).

YELLOWFIN and the Art of Momentum Tuning

0k 5k 10k 15k 20k 25k 30k

Iterations

3.5

4

5

6

7

T
ra

in
in

g
lo

ss
Momentum SGD
Adam
YellowFin

0k 5k 10k 15k 20k

Iterations

1

1.5

2

T
ra

in
in

g
lo

ss

Momentum SGD
Adam
YellowFin

0k 30k 60k 90k 120k

Iterations

1.5

2.0

2.5

T
ra

in
in

g
lo

ss

Vanilla SGD
Momentum SGD
Adam
Adagrad
YellowFin

0k 5k 10k 15k 20k 25k 30k

Iterations

102

103

Va
lid

at
io

n
pe

rp
le

xi
ty

Momentum SGD
Adam
YellowFin

0k 5k 10k 15k 20k

Iterations

4.5

5

6

7

Va
lid

at
io

n
pe

rp
le

xi
ty

Momentum SGD
Adam
YellowFin

0k 30k 60k 90k 120k

Iterations

88.0

88.5

89.0

89.5

90.0

90.5

91.0

91.5

Va
lid

at
io

n
F

1

Momentum SGD
Adam
YellowFin
Adagrad
Vanilla SGD

Figure 8. Training loss and validation metrics on (left to right) word-level language modeling with PTB, char-level language modeling
with TS and constituency parsing on WSJ. The valid. metrics are monotonic as we report the best values up to each number of iterations.

tion. To that end, we run 16 asynchronous workers on a
single machine and force them to update the model in a
round-robin fashion, i.e. the gradient is delayed for 15 it-
erations. Figure 1 (right) presents training losses on the
CIFAR100 ResNet, using YELLOWFIN in Algorithm 1,
closed-loop YELLOWFIN in Algorithm 5 and Adam with
the learning rate achieving the best smoothed loss in Sec-
tion 5.1. We can observe closed-loop YELLOWFIN achieves
20.1x speedup to YELLOWFIN, and consequently a 2.69x
speedup to Adam. This demonstrates that (1) closed-loop
YELLOWFIN accelerates by reducing algorithmic momen-
tum to compensate for asynchrony and (2) can converge in
less iterations than Adam in asynchronous-parallel training.

6 RELATED WORK
Many techniques have been proposed on tuning hyperpa-
rameters for optimizers. General hyperparameter tuning
approaches, such as random search (Bergstra & Bengio,
2012) and Bayesian approaches (Snoek et al., 2012; Hutter
et al., 2011), can directly tune optimizers. As another trend,
adaptive methods, including AdaGrad (Duchi et al., 2011),
RMSProp (Tieleman & Hinton, 2012) and Adam (Kingma
& Ba, 2014), uses per-dimension learning rate. Schaul
et al. (2013) use a noisy quadratic model similar to ours
to tune the learning rate in Vanilla SGD. However they
do not use momentum which is essential in training mod-
ern neural nets. Existing adaptive momentum approach
either consider the deterministic setting (Graepel & Schrau-
dolph, 2002; Rehman & Nawi, 2011; Hameed et al., 2016;
Swanston et al., 1994; Ampazis & Perantonis, 2000; Qiu
et al., 1992) or only analyze stochasticity with O(1/t) learn-

ing rate (Leen & Orr, 1994). In contrast, we aim at practical
momentum adaptivity for stochastically training neural nets.

7 DISCUSSION
We presented YELLOWFIN, the first optimization method
that automatically tunes momentum as well as the learning
rate of momentum SGD. YELLOWFIN outperforms the state-
of-the-art adaptive optimizers on a large class of models
both in synchronous and asynchronous settings. It estimates
statistics purely from the gradients of a running system, and
then tunes the hyperparameters of momentum SGD based
on noisy, local quadratic approximations. As future work,
we believe that more accurate curvature estimation methods,
like the bbprop method (Martens et al., 2012) can further
improve YELLOWFIN. We also believe that our closed-loop
momentum control mechanism in Section 4 could accelerate
other adaptive methods in asynchronous-parallel settings.

ACKNOWLEDGEMENTS
We are grateful to Christopher Ré for his valuable guidance
and support. We thank Bryan He, Paroma Varma, Chris De
Sa, Tri Dao, Albert Gu, Fred Sala, Alex Ratner, Theodoros
Rekatsinas, Olexa Bilaniuk and Avner May for helpful dis-
cussions and feedback. We gratefully acknowledge the
support of the D3M program under No. FA8750-17-2-0095,
the FRQNT new researcher program (2019-NC-257943),
a grant by IVADO and a Canada CIFAR AI chair. Any
opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do
not necessarily reflect the views of DARPA, or the Canadian
or U.S. governments.

YELLOWFIN and the Art of Momentum Tuning

REFERENCES

Ampazis, N. and Perantonis, S. J. Levenberg-marquardt
algorithm with adaptive momentum for the efficient train-
ing of feedforward networks. In Neural Networks, 2000.
IJCNN 2000, Proceedings of the IEEE-INNS-ENNS In-
ternational Joint Conference on, volume 1, pp. 126–131.
IEEE, 2000.

Bengio, Y. Practical recommendations for gradient-based
training of deep architectures. In Neural networks: Tricks
of the trade, pp. 437–478. Springer, 2012.

Bengio, Y. et al. Deep learning of representations for unsu-
pervised and transfer learning. ICML Unsupervised and
Transfer Learning, 27:17–36, 2012.

Bergstra, J. and Bengio, Y. Random search for hyper-
parameter optimization. Journal of Machine Learning
Research, 13(Feb):281–305, 2012.

Bottou, L. Stochastic gradient descent tricks. In Neural
networks: Tricks of the trade, pp. 421–436. Springer,
2012.

Chen, D., Bolton, J., and Manning, C. D. A thorough
examination of the cnn/daily mail reading comprehension
task. arXiv preprint arXiv:1606.02858, 2016.

Choe, D. K. and Charniak, E. Parsing as language modeling.

Duchi, J. Fisher information., 2016. URL
https://web.stanford.edu/class/
stats311/Lectures/lec-09.pdf.

Duchi, J., Hazan, E., and Singer, Y. Adaptive subgradient
methods for online learning and stochastic optimization.
Journal of Machine Learning Research, 12(Jul):2121–
2159, 2011.

Foucart, S. University Lecture, 2012. URL
http://www.math.drexel.edu/˜foucart/
TeachingFiles/F12/M504Lect6.pdf.

Gehring, J., Auli, M., Grangier, D., Yarats, D., and Dauphin,
Y. N. Convolutional sequence to sequence learning. arXiv
preprint arXiv:1705.03122, 2017.

Goodfellow, I., Bengio, Y., and Courville, A. Deep
Learning. MIT Press, 2016. http://www.
deeplearningbook.org.

Graepel, T. and Schraudolph, N. N. Stable adaptive momen-
tum for rapid online learning in nonlinear systems. In
International Conference on Artificial Neural Networks,
pp. 450–455. Springer, 2002.

Hadjis, S., Zhang, C., Mitliagkas, I., Iter, D., and Ré, C.
Omnivore: An optimizer for multi-device deep learning
on cpus and gpus. arXiv preprint arXiv:1606.04487,
2016.

Hameed, A. A., Karlik, B., and Salman, M. S. Back-
propagation algorithm with variable adaptive momentum.
Knowledge-Based Systems, 114:79–87, 2016.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pp. 770–778, 2016.

Hutter, F., Hoos, H. H., and Leyton-Brown, K. Sequential
model-based optimization for general algorithm configu-
ration. LION, 5:507–523, 2011.

Karimi, H., Nutini, J., and Schmidt, M. Linear conver-
gence of gradient and proximal-gradient methods under
the polyak-łojasiewicz condition. In Joint European Con-
ference on Machine Learning and Knowledge Discovery
in Databases, pp. 795–811. Springer, 2016.

Karpathy, A., Johnson, J., and Fei-Fei, L. Visualizing
and understanding recurrent networks. arXiv preprint
arXiv:1506.02078, 2015.

Kingma, D. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Krizhevsky, A., Nair, V., and Hinton, G. The cifar-10 dataset,
2014.

Leen, T. K. and Orr, G. B. Optimal stochastic search and
adaptive momentum. In Advances in neural information
processing systems, pp. 477–484, 1994.

Lessard, L., Recht, B., and Packard, A. Analysis and de-
sign of optimization algorithms via integral quadratic
constraints. SIAM Journal on Optimization, 26(1):57–95,
2016.

Marcus, M. P., Marcinkiewicz, M. A., and Santorini, B.
Building a large annotated corpus of english: The penn
treebank. Computational linguistics, 19(2):313–330,
1993.

Martens, J. New insights and perspectives on the natural
gradient method. arXiv preprint arXiv:1412.1193, 2014.

Martens, J., Sutskever, I., and Swersky, K. Estimating the
hessian by back-propagating curvature. arXiv preprint
arXiv:1206.6464, 2012.

Mitliagkas, I., Zhang, C., Hadjis, S., and Ré, C. Asynchrony
begets momentum, with an application to deep learning.
arXiv preprint arXiv:1605.09774, 2016.

https://web.stanford.edu/class/stats311/Lectures/lec-09.pdf
https://web.stanford.edu/class/stats311/Lectures/lec-09.pdf
http://www.math.drexel.edu/~foucart/TeachingFiles/F12/M504Lect6.pdf
http://www.math.drexel.edu/~foucart/TeachingFiles/F12/M504Lect6.pdf
http://www.deeplearningbook.org
http://www.deeplearningbook.org

YELLOWFIN and the Art of Momentum Tuning

Nesterov, Y. A method of solving a convex programming
problem with convergence rate o (1/k2). In Soviet Mathe-
matics Doklady, volume 27, pp. 372–376, 1983.

Nesterov, Y. Introductory lectures on convex optimization:
A basic course, volume 87. Springer Science & Business
Media, 2013.

Niu, F., Recht, B., Re, C., and Wright, S. Hogwild: A lock-
free approach to parallelizing stochastic gradient descent.
In Advances in Neural Information Processing Systems,
pp. 693–701, 2011.

Orr, G. B. and Müller, K.-R. Neural networks: tricks of the
trade. Springer, 2003.

Pascanu, R. and Bengio, Y. Revisiting natural gradient for
deep networks. arXiv preprint arXiv:1301.3584, 2013.

Pascanu, R., Mikolov, T., and Bengio, Y. On the difficulty
of training recurrent neural networks. In International
Conference on Machine Learning, pp. 1310–1318, 2013.

Polyak, B. T. Some methods of speeding up the convergence
of iteration methods. USSR Computational Mathematics
and Mathematical Physics, 4(5):1–17, 1964.

Press, O. and Wolf, L. Using the output embedding to im-
prove language models. arXiv preprint arXiv:1608.05859,
2016.

Qiu, G., Varley, M., and Terrell, T. Accelerated training of
backpropagation networks by using adaptive momentum
step. Electronics letters, 28(4):377–379, 1992.

Reddi, S. J., Kale, S., and Kumar, S. On the convergence of
adam and beyond. 2018.

Rehman, M. Z. and Nawi, N. M. The effect of adaptive
momentum in improving the accuracy of gradient descent
back propagation algorithm on classification problems. In
International Conference on Software Engineering and
Computer Systems, pp. 380–390. Springer, 2011.

Roux, N. L., Manzagol, P.-A., and Bengio, Y. Topmoumoute
online natural gradient algorithm. In Advances in neural
information processing systems, pp. 849–856, 2008.

Schaul, T., Zhang, S., and LeCun, Y. No more pesky learn-
ing rates. ICML (3), 28:343–351, 2013.

Snoek, J., Larochelle, H., and Adams, R. P. Practical
bayesian optimization of machine learning algorithms.
In Advances in neural information processing systems,
pp. 2951–2959, 2012.

Sutskever, I., Martens, J., Dahl, G., and Hinton, G. On the
importance of initialization and momentum in deep learn-
ing. In Proceedings of the 30th international conference
on machine learning (ICML-13), pp. 1139–1147, 2013.

Swanston, D., Bishop, J., and Mitchell, R. J. Simple
adaptive momentum: new algorithm for training multi-
layer perceptrons. Electronics Letters, 30(18):1498–1500,
1994.

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan,
D., Goodfellow, I., and Fergus, R. Intriguing properties of
neural networks. arXiv preprint arXiv:1312.6199, 2013.

Tieleman, T. and Hinton, G. Lecture 6.5-rmsprop: Divide
the gradient by a running average of its recent magnitude.
COURSERA: Neural networks for machine learning, 4
(2), 2012.

Wilson, A. C., Roelofs, R., Stern, M., Srebro, N., and Recht,
B. The marginal value of adaptive gradient methods
in machine learning. arXiv preprint arXiv:1705.08292,
2017.

Xie, S., Girshick, R., Dollár, P., Tu, Z., and He, K. Aggre-
gated residual transformations for deep neural networks.
arXiv preprint arXiv:1611.05431, 2016.

Zhang, C. and Ré, C. Dimmwitted: A study of main-
memory statistical analytics. PVLDB, 7(12):1283–
1294, 2014. URL http://www.vldb.org/pvldb/
vol7/p1283-zhang.pdf.

Zhu, C., Han, S., Mao, H., and Dally, W. J. Trained ternary
quantization. arXiv preprint arXiv:1612.01064, 2016.

http://www.vldb.org/pvldb/vol7/p1283-zhang.pdf
http://www.vldb.org/pvldb/vol7/p1283-zhang.pdf

YELLOWFIN and the Art of Momentum Tuning

A PROOF OF LEMMA 3
To prove Lemma 3, we first prove a more generalized ver-
sion in Lemma 7. By restricting f to be a one dimensional
quadratics function, the generalized curvature ht itself is
the only eigenvalue. We can prove Lemma 3 as a straight-
forward corollary. Lemma 7 also implies, in the multi-
ple dimensional correspondence of (4), the spectral radius
ρ(At) =

√
µ if the curvature on all eigenvector directions

(eigenvalue) satisfies (6).
Lemma 7. Let the gradients of a function f be described
by

∇f(x t) = H (x t)(x t − x ∗), (19)

with H (xt) ∈ Rn 7→ Rn×n. Then the momentum update
can be expressed as a linear operator:(

y t+1

y t

)
=

(
I − αH (x t) + µI −µI

I 0

)(
y t

y t−1

)
=At

(
y t

y t−1

)
,

(20)

where y t , x t − x ∗. Now, assume that the following
condition holds for all eigenvalues λ(H (xt)) of H (xt):

(1−√µ)2
α

≤ λ(H (xt)) ≤
(1 +

√
µ)2

α
. (21)

then the spectral radius of At is controlled by momentum
with ρ(At) =

√
µ.

Proof. Let λt be an eigenvalue of matrix At, it gives
det (At − λtI) = 0. We define the blocks in At as
C = I − αH t + µI − λtI , D = −µI , E = I and
F = −λtI which gives

det (At − λtI) = detF det
(
C −DF−1E

)
= 0

assuming generally F is invertible. Note we use
H t , H (x t) for simplicity in writing. The equation
det
(
C −DF−1E

)
= 0 implies that

det
(
λ2t I − λtM t + µI

)
= 0 (22)

with M t = (I − αH t + µI). In other words, λt satis-
fied that λ2t − λtλ(M t) + µ = 0 with λ(M t) being one
eigenvalue of Mt . I.e.

λt =
λ(M t)±

√
λ(M t)2 − 4µ

2
(23)

On the other hand, (21) guarantees that (1 − αλ(H t) +
µ)2 ≤ 4µ. We know both H t and I − αH t + µI are
symmetric. Thus for all eigenvalues λ(M t) of M t, we have
λ(M t)

2 = (1 − αλ(H t) + µ)2 ≤ 4µ which guarantees
|λt| = √µ for all λt. As the spectral radius is equal to
the magnitude of the largest eigenvalue of At, we have the
spectral radius of At being

√
µ.

B PROOF OF LEMMA 5
We first prove Lemma 8 and Lemma 9 as preparation for the
proof of Lemma 5. After the proof for one dimensional case,
we discuss the trivial generalization to multiple dimensional
case.

Lemma 8. Let the h be the curvature of a one dimensional
quadratic function f and xt = Ext. We assume, without
loss of generality, the optimum point of f is x? = 0. Then
we have the following recurrence

(
xt+1

xt

)
=

(
1− αh+ µ −µ

1 0

)t(
x1
x0

)
(24)

Proof. From the recurrence of momentum SGD, we have

Ext+1 =E[xt − α∇fSt(xt) + µ(xt − xt−1)]
=Ext [xt − αESt∇fSt(xt) + µ(xt − xt−1)]
=Ext [xt − αhxt + µ(xt − xt−1)]
=(1− αh+ µ)xt − µxt−1

By putting the equation in to matrix form, (24) is a straight-
forward result from unrolling the recurrence for t times.
Note as we set x1 = x0 with no uncertainty in momentum
SGD, we have [x0, x1] = [x0, x1].

Lemma 9. Let Ut = E(xt − xt)
2 and Vt = E(xt −

xt)(xt−1 − xt−1) with xt being the expectation of xt. For
quadratic function f(x) with curvature h ∈ R, We have the
following recurrence

Ut+1

Ut
Vt+1

 = (I −B>)(I −B)−1

α2C
0
0

 (25)

where

B =

(1− αh+ µ)2 µ2 −2µ(1− αh+ µ)
1 0 0

1− αh+ µ 0 −µ

 (26)

and C = E(∇fSt(xt)−∇f(xt))2 is the variance of gradi-
ent on minibatch St.

Proof. We prove by first deriving the recurrence for Ut and
Vt respectively and combining them in to a matrix form. For

YELLOWFIN and the Art of Momentum Tuning

Ut, we have

Ut+1 =E(xt+1 − xt+1)
2

=E(xt − α∇fSt(xt) + µ(xt − xt−1)
− (1− αh+ µ)xt + µxt−1)

2

=E(xt − α∇f(xt) + µ(xt − xt−1)
− (1− αh+ µ)xt + µxt−1

+ α(∇f(xt)−∇fSt(xt)))2

=E((1− αh+ µ)(xt − xt)− µ(xt−1 − xt−1))2

+ α2E(∇f(xt)−∇fSt(xt))2

=(1− αh+ µ)2E(xt − xt)2
− 2µ(1− αh+ µ)E(xt − xt)(xt−1 − xt−1)
+ µ2E(xt−1 − xt−1)2 + α2C

(27)
where the cross terms cancels due to the fact ESt [∇f(xt)−
∇fSt(xt)] = 0 in the third equality.

For Vt, we can similarly derive

Vt =E(xt − xt)(xt−1 − xt−1)
=E((1− αh+ µ)(xt−1 − xt−1)− µ(xt−2 − xt−2)

+ α(∇f(xt)−∇fSt(xt)))(xt−1 − xt−1)
=(1− αh+ µ)E(xt−1 − xt−1)2
− µE(xt−1 − xt−1)(xt−2 − xt−2)

(28)
Again, the term involving ∇f(xt) − ∇fSt(xt) cancels in
the third equality as a results of ESt [∇f(xt)−∇fSt(xt)] =
0. (27) and (28) can be jointly expressed in the following
matrix formUt+1

Ut
Vt+1

 =B

 Ut
Ut−1
Vt

+

α2C
0
0

=
t−1∑
i=0

B i

α2C
0
0

+B t

U1

U0

V1

=(I −B t)(I −B)−1

α2C
0
0

 .

(29)

Note the second term in the second equality is zero because
x0 and x1 are deterministic. Thus U1=U0=V1=0.

According to Lemma 8 and 9, we have E(xt − x∗)2 =
(e>1 A

t[x1, x0]
>)2 and E(xt−xt)2 = α2Ce>1 (I−B t)(I−

B)−1e1 where e1 ∈ Rn has all zero entries but the first
dimension. Combining these two terms, we prove Lemma 5.
Though the proof here is for one dimensional quadratics,
it trivially generalizes to multiple dimensional quadratics.
Specifically, we can decompose the quadratics along the
eigenvector directions, and then apply Lemma 5 to each

eigenvector direction using the corresponding curvature h
(eigenvalue). By summing quantities in (11) for all eigen-
vector directions, we can achieve the multiple dimensional
correspondence of (11).

C PROOF OF LEMMA 6
Again we first present a proof of a multiple dimensional
generalized version of Lemma 6. The proof of Lemma 6 is
a one dimensional special case of Lemma 10. Lemma 10
also implies that for multiple dimension quadratics, the
corresponding spectral radius ρ(B) = µ if (1−√µ)2

α ≤ h ≤
(1+
√
µ)2

α on all the eigenvector directions with h being the
eigenvalue (curvature).

Lemma 10. Let H ∈ Rn×n be a symmetric matrix and
ρ(B) be the spectral radius of matrix

B =

M>M µ2I −2µM
I 0 0
M 0 −µI

 (30)

where M = I − αH + µI . We have ρ(B) = µ if all
eigenvalues λ(H) of H satisfies

(1−√µ)2
α

≤ λ(H) ≤ (1 +
√
µ)2

α
. (31)

Proof. Let λ be an eigenvalue of matrix B , it gives
det (B − λI) = 0 which can be alternatively expressed
as

det (B − λI) = detF det
(
C −DF−1E

)
= 0 (32)

assuming F is invertible, i.e. λ+ µ 6= 0, where the blocks
in B

C =

(
M>M − λI µ2I

I −λI

)
,D =

(
−2µM

0

)
,

E =

(
M
0

)>
,F = −µI − λI

with M = I − αH + µI . (32) can be transformed using
straight-forward algebra as

det

(
(λ− µ)M>M − (λ+ µ)λI (λ+ µ)µ2I

(λ+ µ)I −(λ+ µ)λI

)
= 0

(33)
Using similar simplification technique as in (32), we can
further simplify into

(λ− µ) det
(
(λ+ µ)2I − λM>M

)
= 0 (34)

if λ 6= µ, as (λ+µ)2I−λM>M is diagonalizable, we have
(λ+ µ)2 − λλ(M)2 = 0 with λ(M) being an eigenvalue

YELLOWFIN and the Art of Momentum Tuning

of symmetric M . The analytic solution to the equation can
be explicitly expressed as

λ =
λ(M)2 − 2µ±

√
(λ(M)2 − 2µ)2 − 4µ2

2
. (35)

When the condition in (31) holds, we have λ(M)2 = (1−
αλ(H) + µ)2 ≤ 4µ. One can verify that

(λ(M)2 − 2µ)2 − 4µ2

= (λ(M)2 − 4µ)λ(M)2

=
(
(1− αρ(H) + µ)2 − 4µ

)
λ(M)2

≤ 0

(36)

Thus the roots in (35) are conjugate with |λ| = µ. In conclu-
sion, the condition in (31) can guarantee all the eigenvalues
of B has magnitude µ. Thus the spectral radius of B is
controlled by µ.

D PRACTICAL IMPLEMENTATION

In Section 3.2, we discuss estimators for learning rate and
momentum tuning in YELLOWFIN. In our experiment prac-
tice, we have identified a few practical implementation de-
tails which are important for improving estimators. Zero-
debias is proposed by Kingma & Ba (2014), which accel-
erates the process where exponential average adapts to the
level of original quantity in the beginning. We applied zero-
debias to all the exponential average quantities involved in
our estimators. In some LSTM models, we observe that
our estimated curvature may decrease quickly along the
optimization process. In order to better estimate extremal
curvature hmax and hmin with fast decreasing trend, we ap-
ply zero-debias exponential average on the logarithmic of
hmax,t and hmin,t, instead of directly on hmax,t and hmin,t.
Except from the above two techniques, we also implemented
the slow start heuristic proposed by (Schaul et al., 2013).
More specifically, we use α = min{αt, t · αt/(10 · w)} as
our learning rate with w as the size of our sliding window in
hmax and hmin estimation. It discount the learning rate in
the first 10 ·w steps and helps to keep the learning rate small
in the beginning when the exponential averaged quantities
are not accurate enough.

E MODEL SPECIFICATION

The model specification is shown in Table 3 for all the
experiments in Section 5. CIRAR10 ResNet uses the regular
ResNet units while CIFAR100 ResNet uses the bottleneck
units. Only the convolutional layers are shown with filter
size, filter number as well as the repeating count of the
units. The layer counting for ResNets also includes batch
normalization and Relu layers. The LSTM models are also

diversified for different tasks with different vocabulary sizes,
word embedding dimensions and number of layers.

F SPECIFICATION FOR SYNCHRONOUS
EXPERIMENTS

In Section 5.1, we demonstrate the synchronous experiments
with extensive discussions. For the reproducibility, we pro-
vide here the specification of learning rate grids. The num-
ber of iterations as well as epochs, i.e. the number of passes
over the full training sets, are also listed for completeness.
For YELLOWFIN in all the experiments in Section 5, we
uniformly use sliding window size 20 for extremal curvature
estimation and β = 0.999 for smoothing. For momentum
SGD and Adam, we use the following configurations.

• CIFAR10 ResNet

– 40k iterations (∼114 epochs)
– Momentum SGD:

learning rates {0.001, 0.01(best), 0.1, 1.0},
momentum 0.9

– Adam:
learning rates {0.0001, 0.001(best), 0.01, 0.1}

• CIFAR100 ResNet

– 120k iterations (∼341 epochs)
– Momentum SGD:

learning rates {0.001, 0.01(best), 0.1, 1.0},
momentum 0.9

– Adam:
learning rates {0.00001, 0.0001(best), 0.001, 0.01}

• PTB LSTM

– 30k iterations (∼13 epochs)
– Momentum SGD:

learning rates {0.01, 0.1, 1.0(best), 10.0},
momentum 0.9

– Adam:
learning rates {1e-4, 0.001(best), 0.01, 0.1}

• TS LSTM

– ∼21k iterations (50 epochs)
– Momentum SGD:

learning rates {0.05, 0.1, 0.5, 1.0(best), 5.0},
momentum 0.9

– Adam:
learning rates {5e-4, 0.001, 0.005(best), 0.01, 0.05}

– Decrease learning rate by factor 0.97 every epoch
for all optimizers, following the design by Karpathy
et al. (2015).

• WSJ LSTM

YELLOWFIN and the Art of Momentum Tuning

network # layers Conv 0 Unit 1s Unit 2s Unit 3s

CIFAR10 ResNet 110
[
3× 3, 4

] [
3× 3, 4
3× 3, 4

]
× 6

[
3× 3, 8
3× 3, 8

]
× 6

[
3× 3, 16
3× 3, 16

]
× 6

CIFAR100 ResNet 164
[
3× 3, 4

] 1× 1, 16
3× 3, 16
1× 1, 64

× 6

 1× 1, 32
3× 3, 32
1× 1, 128

× 6

 1× 1, 64
3× 3, 64
1× 1, 256

× 6

network # layers Word Embed. Layer 1 Layer 2 Layer 3

TS LSTM 2 [65 vocab, 128 dim] 128 hidden units 128 hidden units –

PTB LSTM 2 [10000 vocab, 200 dim] 200 hidden units 200 hidden units –

WSJ LSTM 3 [6922 vocab, 500 dim] 500 hidden units 500 hidden units 500 hidden units

Table 3. Specification of ResNet and LSTM model architectures.

– ∼120k iterations (50 epochs)

– Momentum SGD:
learning rates {0.05, 0.1, 0.5(best), 1.0, 5.0},
momentum 0.9

– Adam:
learning rates {1e-4, 5e-4, 0.001(best), 0.005, 0.01}

– Vanilla SGD:
learning rates {0.05, 0.1, 0.5, 1.0(best), 5.0}

– Adagrad:
learning rates {0.05, 0.1, 0.5(best), 1.0, 5.0}

– Decrease learning rate by factor 0.9 every epochs
after 14 epochs for all optimizers, following the
design by Choe & Charniak.

G ADDITIONAL EXPERIMENT RESULTS

G.1 The importance of adaptive momentum

In Section 5.1, we discussed the importance of adaptive mo-
mentum by demonstrating the training loss on the TS LSTM
and CIFAR100 ResNet models. In Figure 9, we further
validate the importance of adaptive momentum by demon-
strating the corresponding validation/test performance on
the PSTM LSTM and CIFAR100 ResNet models. Particu-
larly in Figure 7 (left and middle), similar to our observation
on training loss comparison, we can also see that neither
prescribed momentum 0.0 or 0.9 can match the performance
of YELLOWFIN with adaptive momentum across the two
tasks. Furthermore, in Figure 7 (right), hand-tuned Vanilla
SGD without momentum decreases the validation perplexity
in TS LSTM more slowly than momentum based methods.
However by dynamically rescaling the Vanilla SGD learning
rate based on YellowFin tuned momentum, it demonstrates
a validation perplexity decreasing speed matching that of
momentum based methods.

G.2 Training loss and test accuracy on CIFAR10 and
CIFAR100 ResNet

In Figure 10, we demonstrate the training loss on CI-
FAR10 ResNet and CIFAR100 ResNet. Specifically, YEL-
LOWFIN can match the performance of hand-tuned mo-
mentum SGD, and achieves 1.93x and 1.38x speedup com-
paring to hand-tuned Adam respectively on CIFAR10 and
CIFAR100 ResNet. In Figure 11, we show the test accuracy
curves corresponding to the curves in Figure 10. We can
observe that YELLOWFIN can have matching or better train-
ing loss at the end of training than hand-tuned momentum
SGD, while the test accuracy is worse (e.g. CIFAR100);
this phenomenon where better training loss does not guaran-
tee better generalization is often observed in deep learning
results.

G.3 Tuning momentum can improve Adam in
asynchronous-parallel setting

We conduct experiments on PTB LSTM with 16 asyn-
chronous workers using Adam using the same protocol as
in Section 5.2. Fixing the learning rate to the value achiev-
ing the lowest smoothed loss in Section 5.1, we sweep the
smoothing parameter β1 (Kingma & Ba, 2014) of the first or-
der moment estimate in grid {−0.2, 0.0, 0.3, 0.5, 0.7, 0.9}.
β1 serves the same role as momentum in SGD and we call
it the momentum in Adam. Figure 12 shows tuning momen-
tum for Adam under asynchrony gives measurably better
training loss. This result emphasizes the importance of mo-
mentum tuning in asynchronous settings and suggests that
state-of-the-art adaptive methods can perform sub-optimally
when using prescribed momentum.

G.4 Accelerating YELLOWFIN with finer grain
learning rate tuning

As an adaptive tuner, YELLOWFIN does not involve manual
tuning. It can present faster development iterations on model

YELLOWFIN and the Art of Momentum Tuning

0k 5k 10k 15k 20k

Iterations

1.5

1.6

1.7

1.8

1.9

2.0
Va

lid
at

io
n

pe
rp

le
xi

ty
YellowFin
YF mom.=0.0
YF mom.=0.9
YF rescaling

0k 30k 60k 90k

Iterations

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Te
st

ac
cu

ra
cy

YellowFin
YF mom.=0.0
YF mom.=0.9
YF rescaling

0k 5k 10k 15k 20k

Iterations

1.5

1.6

1.7

1.8

1.9

2.0

Va
lid

at
io

n
pe

rp
le

xi
ty

Momentum SGD
Vanilla SGD
YellowFin
YF rescaling

Figure 9. Importance of adaptive momentum: The validation/test performance comparison between YELLOWFIN with adaptive momentum
and YELLOWFIN with fixed momentum values; this comparison is conducted on TS LSTM (left) and CIFAR100 ResNet (middle).
Prescribed momentum values do not match the performance of YELLOWFIN with adaptive momentum across the two tasks. An adaptive
learning rate for SGD based on YELLOWFIN tuned momentum, can match the performance of momentum based methods on the TS
LSTM(right).

0k 10k 20k 30k 40k
Iterations

10−1

100

T
ra

in
in

g
lo

ss

Momentum SGD
Adam
YellowFin

0k 30k 60k 90k 120k
Iterations

100

101

T
ra

in
in

g
lo

ss

Momentum SGD
Adam
YellowFin

Figure 10. The best training loss for the 100-layer CIFAR10 ResNet (left) and 164-layer CIFAR100 bottleneck ResNet (right).

architectures than grid search on optimizer hyperparameters.
In deep learning practice for computer vision and natural
language processing, after fixing the model architecture, ex-
tensive optimizer tuning (e.g. grid search or random search)
can further improve the performance of a model. A natural
question to ask is can we also slightly tune YELLOWFIN to
accelerate convergence and improve the model performance.
Specifically, we can manually multiply a positive number,
the learning rate factor, to the auto-tuned learning rate in
YELLOWFIN to further accelerate.

In this section, we empirically demonstrate the effec-
tiveness of learning rate factor on a 29-layer ResNext
(2x64d) (Xie et al., 2016) on CIFAR10 and a Tied
LSTM model (Press & Wolf, 2016) with 650 dimen-
sions for word embedding and two hidden units layers
on the PTB dataset. When running YELLOWFIN,
we search for the optimal learning rate factor in grid
{ 13 , 0.5, 1, 2(best for ResNext), 3(best for Tied LSTM), 10}.
Similarly, we search the same learning rate factor grid for
Adam, multiplying the factor to its default learning rate
0.001. To further strengthen the performance of Adam as a
baseline, we also run it on conventional logarithmic learning
rate grid {5e−5, 1e−4, 5e−4, 1e−3, 5e−3} for ResNext and
{1e−4, 5e−4, 1e−3, 5e−3, 1e−2} for Tied LSTM. We report

the best metric from searching the union of learning rate
factor grid and logarithmic learning rate grid as searched
Adam results. Recently, AMSGrad (AMSG) (Reddi et al.,
2018) is proposed as an variant of Adam to correct the
convergence issue on certain convex problems. To provide a
complete comparison, we additionally perform learning rate
factor search with grid {0.1, 13 , 0.5, 1, 2, 3, 10} for AMSG.
Empirically, we observe Adam and AMSG have similar
convergence behavior with same leraning rate factors, and
learning factor 1

3 and 1.0 work best for Adam/AMSG
respectively on ResNext and Tied LSTM.

As shown in Figure 13, with the searched best learning rate
factor, YELLOWFIN can improve validation perplexity on
Tied LSTM from 88.7 to 80.5, an improvement of more
than 9%. Similarly, the searched learning rate factor can
improve test accuracy from 92.63 to 94.75 on ResNext.
More importantly, we can observe, with learning rate factor
search on the two models, YELLOWFIN can achieve better
validation metric than the searched Adam and AMSG results.
It demonstrates that finer-grain learning rate tuning, i.e. the
learning rate factor search, can be effectively applied on
YELLOWFIN to improve the performance of deep learning
models.

YELLOWFIN and the Art of Momentum Tuning

0k 10k 20k 30k 40k
Iterations

0.80

0.82

0.84

0.86

0.88

0.90

Te
st

ac
cu

ra
cy

Momentum SGD
Adam
YellowFin

0k 30k 60k 90k
Iterations

0.50

0.55

0.60

0.65

0.70

Te
st

ac
cu

ra
cy

Momentum SGD
Adam
YellowFin

Figure 11. Test accuracy for ResNet on 100-layer CIFAR10 ResNet (left) and 164-layer CIFAR100 bottleneck ResNet. The test accuracy
curves corresponds to the training loss curves in Figure 10

0k 5k 10k 15k 20k 25k 30k
Iterations

3

4

5

6

7

T
ra

in
in

g
lo

ss

β1 = −0.2

β1 = 0.0

β1 = 0.3

β1 = 0.5

β1 = 0.7

β1 = 0.9

Figure 12. Hand-tuning Adam’s momentum under asynchrony.

0 5 10 15 20 25 30 35 40

Epochs

70

90

110

Va
lid

at
io

n
pe

rp
le

xi
ty

YellowFin
Adam default
AMSG default
YF searched
Adam searched
AMSG searched

0 50 100 150 200

Epochs

80

85

90

95

Va
lid

at
io

n
ac

cu
ra

cy

Figure 13. Validation perplexity on Tied LSTM and validation accuracy on ResNext. Learning rate fine-tuning using grid-searched factor
can further improve the performance of YELLOWFIN in Algorithm 1. YELLOWFIN with learning factor search can outperform hand-tuned
Adam on validation metrics on both models.

