
DATA VALIDATION FOR MACHINE LEARNING

Eric Breck 1 Neoklis Polyzotis 1 Sudip Roy 1 Steven Euijong Whang 2 Martin Zinkevich 1

ABSTRACT
Machine learning is a powerful tool for gleaning knowledge from massive amounts of data. While a great deal
of machine learning research has focused on improving the accuracy and efficiency of training and inference
algorithms, there is less attention in the equally important problem of monitoring the quality of data fed to machine
learning. The importance of this problem is hard to dispute: errors in the input data can nullify any benefits
on speed and accuracy for training and inference. This argument points to a data-centric approach to machine
learning that treats training and serving data as an important production asset, on par with the algorithm and
infrastructure used for learning.

In this paper, we tackle this problem and present a data validation system that is designed to detect anomalies
specifically in data fed into machine learning pipelines. This system is deployed in production as an integral
part of TFX(Baylor et al., 2017) – an end-to-end machine learning platform at Google. It is used by hundreds
of product teams use it to continuously monitor and validate several petabytes of production data per day. We
faced several challenges in developing our system, most notably around the ability of ML pipelines to soldier on
in the face of unexpected patterns, schema-free data, or training/serving skew. We discuss these challenges, the
techniques we used to address them, and the various design choices that we made in implementing the system.
Finally, we present evidence from the system’s deployment in production that illustrate the tangible benefits of
data validation in the context of ML: early detection of errors, model-quality wins from using better data, savings
in engineering hours to debug problems, and a shift towards data-centric workflows in model development.

1 INTRODUCTION

Machine Learning (ML) is widely used to glean knowl-
edge from massive amounts of data. The applications are
ever-increasing and range from machine perception and text
understanding to health care, genomics, and self-driving
cars. Given the critical nature of some of these applications,
and the role that ML plays in their operation, we are also ob-
serving the emergence of ML platforms (Baylor et al., 2017;
Chandra, 2014) that enable engineering teams to reliably
deploy ML pipelines in production.

In this paper we focus on the problem of validating the
input data fed to ML pipelines. The importance of this prob-
lem is hard to overstate, especially for production pipelines.
Irrespective of the ML algorithms used, data errors can
adversely affect the quality of the generated model. Fur-
thermore, it is often the case that the predictions from the
generated models are logged and used to generate more data
for training. Such feedback loops have the potential to am-

1Google Research 2KAIST. Work done while at Google
Research. Correspondence to: Neoklis Polyzotis <npolyzo-
tis@google.com>.

Proceedings of the 2nd SysML Conference, Palo Alto, CA, USA,
2019. Copyright 2019 by the author(s).

plify even “small” data errors and lead to gradual regression
of model performance over a period of time. Therefore, it is
imperative to catch data errors early, before they propagate
through these complex loops and taint more of the pipeline’s
state. The importance of error-free data also applies to the
task of model understanding, since any attempt to debug
and understand the output of the model must be grounded
on the assumption that the data is adequately clean. All
these observations point to the fact that we need to elevate
data to a first-class citizen in ML pipelines, on par with
algorithms and infrastructure, with corresponding tooling
to continuously monitor and validate data throughout the
various stages of the pipeline.

Data validation is neither a new problem nor unique to
ML, and so we borrow solutions from related fields (e.g.,
database systems). However, we argue that the problem
acquires unique challenges in the context of ML and hence
we need to rethink existing solutions. We discuss these
challenges through an example that reflects an actual data-
related production outage in Google.

Example 1.1 Consider an ML pipeline that trains on new
training data arriving in batches every day, and pushes a
fresh model trained on this data to the serving infrastruc-
ture. The queries to the model servers (the serving data)

Data Validation for Machine Learning

are logged and joined with labels to create the next day’s
training data. This setup ensures that the model is con-
tinuously updated and adapts to any changes in the data
characteristics on a daily basis.

Now, let us assume that an engineer performs a (seemingly)
innocuous code refactoring in the serving stack, which, how-
ever, introduces a bug that pins the value of a specific int
feature to -1 for some slice of the serving data (e.g., imagine
that the feature’s value is generated by doing a RPC into
a backend system and the bug causes the RPC to fail, thus
returning an error value). The ML model, being robust to
data changes, continues to generate predictions, albeit at a
lower level of accuracy for this slice of data.

Since the serving data eventually becomes training data,
this means that the next version of the model gets trained
with the problematic data. Note that the data looks perfectly
fine for the training code, since -1 is an acceptable value
for the int feature. If the feature is important for accuracy
then the model will continue to under-perform for the same
slice of data. Moreover, the error will persist in the serving
data (and thus in the next batch of training data) until it is
discovered and fixed.

The example illustrates a common setup where the gener-
ation (and ownership!) of the data is decoupled from the
ML pipeline. This decoupling is often necessary as it allows
product teams to experiment and innovate by joining data
sources maintained and curated by other teams. However,
this multiplicity of data sources (and corresponding code
paths populating the sources) can lead to multiple failures
modes for different slices of the data. A lack of visibility
by the ML pipeline into this data generation logic except
through side effects (e.g., the fact that -1 became more
common on a slice of the data) makes detecting such slice-
specific problems significantly harder. Furthermore, the
pipeline often receives the data in a raw-value format (e.g.,
tensorflow.Example or CSV) that strips out any se-
mantic information that can help identify errors. Going back
to our example, -1 is a valid value for the int feature and
does not carry with it any semantics related to the backend
errors. Overall, there is little a-priori information that the
pipeline can leverage to reason about data errors.

The example also illustrates a very common source of data
errors in production: bugs in code. This has several impor-
tant implications for data validation. First, data errors are
likely to exhibit some “structure” that reflects the execution
of the faulty code (e.g., all training examples in the slice get
the value of -1). Second, these errors tend to be different
than the type of errors commonly considered in the data-
cleaning literature (e.g., entity resolution). Finally, fixing an
error requires changes to code which is immensely hard to
automate reliably. Even if it were possible to automatically
“patch” the data to correct an error (e.g., using a technique

such as Holocleans (Rekatsinas et al., 2017)), this would
have to happen consistently for both training and serving
data, with the additional challenge that the latter is a stream
with stringent latency requirements. Instead, the common
approach in practice is for the on-call engineer to investigate
the problem, isolate the bug in the code, and submit a fix
for both the training and serving side. In turn, this means
that the data-validation system must generate reliable alerts
with high precision, and provide enough context so that the
on-call engineer can quickly identify the root cause of the
problem. Our experience shows that on-calls tend to ignore
alerts that are either spammy or not actionable, which can
cause important errors to go unnoticed.

A final observation on Example 1.1 is that errors can happen
and propagate at different stages of the pipeline. Catching
data errors early is thus important, as it helps debug the
root cause and also rollback the pipeline to a working state.
Moreover, it is important to rely on mechanisms specific
to data validation rather than on detection of second-order
effects. Concretely, suppose that we relied on model-quality
validation as a failsafe for data errors. The resilience of ML
algorithms to noisy data means that errors may result in a
small drop in model quality, one that can be easily missed
if the data errors affect the model only on specific slices of
the data but the aggregate model metrics still look okay.

Our Contributions. In this paper we present a data-
validation system whose design is driven by the aforemen-
tioned challenges. Our system is deployed in production as
an integral part of TFX. Hundreds of product teams use our
system to validate trillions of training and serving examples
per day, amounting to several petabytes of data per day.

The data-validation mechanisms that we develop are based
on “battle-tested” principles from data management sys-
tems, but tailored to the context of ML. For instance, a
fundamental piece of our solution is the familiar concept of
a data schema, which codifies the expectations for correct
data. However, as mentioned above, existing solutions do
not work out of the box and need to adapt to the context of
ML. For instance, the schema encodes data properties that
are unique to ML and are thus absent from typical database
schemas. Moreover, the need to surface high-precision, ac-
tionable alerts to a human operator has influenced the type
of properties that we can check. As an example, we found
that statistical tests for detecting changes in the data distribu-
tion, such as the chi-squared test, are too sensitive and also
uninformative for the typical scale of data in ML pipelines,
which led us to seek alternative methods to quantify changes
between data distributions. Another difference is that in
database systems the schema comes first and provides a
mechanism to verify both updates and queries against the
data. This assumption breaks in the context of ML pipelines
where data generation is decoupled from the pipeline. In

Data Validation for Machine Learning

Data Validation System

TFX

Schema

Model Unit
Testing

ModelTraining Code Tensorflow Serving

 Training Data

Test failures,
if any

Fixes to training code

Data Analyzer

Data Validator

Data
Statistics

Serving Data

Anomaly Alerts

Suggested Schema Edits /

U
ser approved

schem
a updates

Training and
Serving Data

To Data
Analyzer

To Data
Analyzer

Training data
generation code

User’s code fixes

Serving data
generation code

To serving data
generation code

U
se

r’s
 c

od
e

fix
es

Figure 1: An overview of our data validation system and its integration with TFX.

essence, in our setup the data comes first. This necessitates
new workflows where the schema can be inferred from and
co-evolve with the data. Moreover, this co-evolution needs
to be user friendly so that we can allow human operators to
seamlessly encode their domain knowledge about the data
as part of the schema.

Another novel aspect of our work is that we use the schema
to perform unit tests for the training algorithm. These tests
check that there are no obvious errors in the code of the train-
ing algorithm, but most importantly they help our system
uncover any discrepancies between the codified expectations
over the data and the assumptions made by the algorithm.
Any discrepancies mean that either the schema needs to
change (to codify the new expectations) or the training code
needs to change to be compliant with the actual shape of
the data. Overall, this implies another type of co-evolution
between the schema and the training algorithm.

As mentioned earlier, our system has been deployed in pro-
duction at Google and so some parts of its implementation
have been influenced by the specific infrastructure that we
use. Still, we believe that our design choices, techniques,
and lessons learned generalize to other setups and are thus
of interest to both researchers and practitioners. We have
also open-sourced the libraries1 that implement the core
techniques that we describe in the paper so that they can be
integrated in other platforms.

1GitHub repository for TensorFlow Data Validation: https://
github.com/tensorflow/data-validation

2 SYSTEM OVERVIEW

Figure 1 shows a schematic overview of our data-validation
system and how it integrates with an end-to-end machine
learning platform. At a high level, the platform instantiates
a pipeline that ingests training data, passes it to data valida-
tion (our system), then pipes it to a training algorithm that
generates a model, and finally pushes the latter to a serving
infrastructure for inference. These pipelines typically work
in a continuous fashion: a new batch of data arrives peri-
odically, which triggers a new run of the pipeline. In other
words, each batch of input data will trigger a new run of
the data-validation logic and hence potentially a new set of
data anomalies. Note that our notion of a batch is different
than the mini-batches that constitute chunks of data used
to compute and update model parameters during training.
The batches of data ingested into the pipeline correspond
to larger intervals of time (say a day). While our system
supports validation of data on a sample of data ingested
into the pipeline, this option is disabled by default since
our current response times for single batch is acceptable for
most users and within the expectations of end-to-end ML.
Furthermore, by validating over the entire batch we ensure
that anomalies that are infrequent or manifest in small but
important slices of data are not silently ignored.

The data validation system consists of three main compo-
nents – a Data Analyzer that computes predefined set of
data statistics sufficient for data validation, a Data Valida-
tor that checks for properties of data as specified through a

https://github.com/tensorflow/data-validation
https://github.com/tensorflow/data-validation

Data Validation for Machine Learning

Schema (defined in Section 3), and a Model Unit Tester that
checks for errors in the training code using synthetic data
generated through the schema. Overall, our system supports
the following types of data validation:

• Single-batch validation answers the question: are
there any anomalies in a single batch of data? The
goal here is to alert the on-call about the error and
kick-start the investigation.

• Inter-batch validation answers the question: are there
any significant changes between the training and serv-
ing data, or between successive batches of the training
data? This tries to capture the class of errors that occur
between software stacks (e.g., training data generation
follows different logic than serving data generation), or
to capture bugs in the rollout of new code (e.g., a new
version of the training-data generation code results in
different semantics for a feature, which requires old
batches to be backfilled).

• Model testing answers the question: are there any
assumptions in the training code that are not reflected
in the data (e.g. are we taking the logarithm of a feature
that turns out to be a negative number or a string?).

The following sections discuss the details of how our system
performs these data validation checks and how our design
choices address the challenges discussed in Section 1. Now,
we acknowledge that these checks are not exhaustive, but
our experience shows that they cover the vast majority of
errors we have observed in production and so they provide
a meaningful scope for the problem.

3 SINGLE-BATCH VALIDATION

The first question we answer is: are there data errors within
each new batch that is ingested by the pipeline?

We expect the data characteristics to remain stable within
each batch, as the latter corresponds to a single run of the
data-generation code. We also expect some characteristics
to remain stable across several batches that are close in time,
since it is uncommon to have frequent drastic changes to the
data-generation code. For these reasons, we consider any de-
viation within a batch from the expected data characteristics,
given expert domain knowledge, as an anomaly.

In order to codify these expected data characteristics, our
system generalizes the traditional notion of a schema from
database systems. The schema acts as a logical model of the
data and attempts to capture some of the semantics that are
lost when the data are transformed to the format accepted
by training algorithms, which is typically key-value lists. To
illustrate this, consider a training example with a key-value
(“age”, 150). If this feature corresponds to the age of a

person in years then clearly there is an error. If, however,
the feature corresponds to the age of a document in days
then the value can be perfectly valid. The schema can codify
our expectations for “age” and provide a reliable mechanism
to check for errors.

message Schema {
// Features described in this schema.
repeated Feature feature;

// String domains referenced in the features.
repeated StringDomain string_domain;

}

message Feature {
// The name of the feature.
string name;

// Type of the feature’s values
FeatureType type;

// Constraints on the number of examples that have this
// feature populated.
FeaturePresence presence;

// Minimum and maximum number of values.
ValueCount value_count;

// Domain for the values of the feature.
oneof domain_info {

// Reference to a domain defined at the schema
// level.
string domain;

// Inline definitions of domains.
IntDomain int_domain;
FloatDomain float_domain;
StringDomain string_domain;
BoolDomain bool_domain;

}

LifecycleStage lifecycle_stage;
}

Figure 2: Simplified schema as a protocol buffer. Note that
tag numbers are omitted to simplify exposition. For further
explanation of constraints, see Appendix A.

Figure 2 shows the schema formalism used by our data val-
idation system, defined as a protocol buffer message(pro,
2017). (We use the protocol-buffer representation as it cor-
responds to our implementation and is also easy to follow.)
The schema follows a logical data model where each training
or serving example is a collection of features, with each fea-
ture having several constraints attached to it. This flat model
has an obvious mapping to the flat data formats used by
popular ML frameworks, e.g., tensorflow.Example
or CSV. We have also extended the schema to cover struc-
tured examples (e.g., JSON objects or protocol buffers) but
we do not discuss this capability in this paper.

The constraints associated with each feature cover some
basic properties (e.g., type, domain, valency) but also con-
straints that are relevant to ML and that also reflect code-
centric error patterns that we want to capture through data
validation (see also our discussion in Section 1). For in-
stance, the presence constraint covers bugs that cause the
data-generation code to silently drop features from some
examples (e.g., failed RPCs that cause the code to skip a
feature). As another case, the domain constraints can cover
bugs that change the representation of values for the same

Data Validation for Machine Learning

feature (e.g., a code-change that lower-cases the string rep-
resentation of country codes for some examples). We defer
a more detailed discussion of our schema formalism in Ap-
pendix A. However, we note that we do not make any claims
on completeness – there are reasonable data properties that
our schema cannot encode. Still, our experience so far has
shown that the current schema is powerful enough to capture
the vast majority of use cases in production pipelines.

Schema Validation The Data Validator component of our
system validates each batch of data by comparing it against
the schema. Any disagreement is flagged as an anomaly and
triggers an alert to the on-call for further investigation. For
now, we assume that the pipeline includes a user-curated
schema that codifies all the constraints of interest. We dis-
cuss how to arrive at this state later.

In view of the design goals of data validation discussed in
Section 1, the Data Validator component:

• attempts to detect issues as early in the pipeline as possible
to avoid training on bad data. In order to ensure it can do
so scalably and efficiently, we rely on the per-batch data
statistics computed by a preceding Data Analyzer module.
Our strategy of validating using these pre-computed statis-
tics allows the validation itself to be fairly lightweight.
This enables revalidation of the data using an updated
schema near instantaneously.

• be easily interpretable and narrowly focused on the exact
anomaly. Table 1 shows different categories of anomalies
that our Data Validator reports to the user. Each anomaly
corresponds to a violation of some property specified in
the schema and has an associated description template
that is populated with concrete values from the detected
anomaly before being presented to the user.

• include suggested updates to the schema to “eliminate”
anomalies that correspond to the natural evolution of the
data. For instance, as shown in Figure 4, the domain of

0: {
 features: {
 feature: {
 name: ‘event’
 string_list: { ‘CLICK’ }
 }
 }
 ...
}
1: {
 features: {
 feature: {
 name: ‘event’
 string_list: {‘CONVERSION’}
 }
 }
 ...
}
...

Schema
Training/Serving data

feature {
 name: ‘event’
 presence: { min_fraction: 1 }
 value_count: {

min: 1
max: 1

 }
 type: BYTES
 string_domain {
 value: ‘CLICK’
 value: ‘CONVERSION’
 }
}

Figure 3: An example schema and corresponding data in
the tf.train.Example (tfe) format.

feature {
 key: ‘event’
 value {
 bytes_list { ‘IMPRESSIONS’ }
 }
}

Fig. 3 Schema !Examples contain missing values.
Fix: Add value to domain

string_domain {
 name: ‘event’
 value: ‘CLICKS’
 value: ‘CONVERSIONS’
+ value: ‘IMPRESSIONS’
}

D
at

a
V

al
id

at
io

n

Figure 4: Schema-driven validation

“event” seems to have acquired a new IMPRESSIONS
value, and so our validator generates a suggestion to
extend the feature’s domain with the same value (this is
shown with the red text and “+” sign in Figure 4).

• avoids false positives by focusing on the narrow set of
constraints that can be expressed in our schema and by re-
quiring that the schema is manually curated, thus ensuring
that the user actually cares about the encoded constraints.

Schema Life Cycle As mentioned earlier, our assumption
is that the pipeline owners are also responsible to curate the
schema. However, many machine learning pipelines use
thousands of features, and so constructing a schema man-
ually for such pipelines can be quite tedious. Furthermore,
the domain knowledge of the features may be distributed
across a number of engineers within the product team or
even outside of the team. In such cases, the upfront effort in
schema construction can discourage engineers from setting
up data validation until they run into a serious data error.

To overcome this adoption hurdle, the Data Validator
component synthesizes a basic version of the schema
based on all available batches of data in the pipeline. This
auto-generated schema attempts to capture salient properties
of the data without overfitting to a particular batch of data.
Avoiding overfitting is important: an overfitted schema is
more likely to cause spurious alerts when validating a new
batch of data, which in turn increases the cognitive overhead
for the on-call engineers, reduces their trust in the system,
and may even lead them to switch off data validation alto-
gether. We currently rely on a set of reasonable heuristics
to perform this initial schema inference. A more formal
solution, perhaps with guarantees or controls on the amount
of overfitting, is an interesting direction for future work.

Once the initial schema is in place, the Data Validator will
recommend updates to the schema as new data is ingested
and analyzed. To help users manage the schema easily, our
system also includes a user interface and tools that aid users
by directing their attention to important suggestions and
providing a click-button interface to apply the suggested
changes. The user can then accept these suggested updates
or manually edit the schema using her judgement. We expect
owners of pipelines to treat the schema as a production
asset at par with source code and adopt best practices for
reviewing, versioning, and maintaining the schema. For
instance, in our pipelines the schema is stored in the version-

Data Validation for Machine Learning

control system for source code.

4 INTER-BATCH VALIDATION

There are certain anomalies that only manifest when two
or more batches of data are considered together, e.g., drift
in the distribution of feature values across multiple batches
of data. In this section, we first cover the different types of
such anomalies, discuss the reasons why they occur, and
finally present some common techniques that can be used
to detect them.

Training-Serving Skew One of the issues that frequently
occurs in production pipelines is skew between training and
serving data. Several factors contribute to this issue but the
most common is different code paths used for generation
of training and serving data. These different code paths
are required due to widely different latency and throughput
characteristics of offline training data generation versus
online serving data generation.

Based on our experience, we can broadly categorize training-
serving skew into three main categories.

Feature skew occurs when a particular feature for an exam-
ple assumes different values in training versus at serving
time. This can happen, for instance, when a developer adds
or removes a feature from the training-data code path but
inadvertently forgets to do the same to the serving path. A
more interesting mechanism through which feature skew
occurs is termed time travel. This happens when the fea-
ture value is determined by querying a non-static source of
data. For instance, consider a scenario where each example
in our data corresponds to an online ad impression. One
of the features for the impression is the number of clicks,
obtained by querying a database. Now, if the training data
is generated by querying the same database then it is likely
that the click count for each impression will appear higher
compared to the serving data, since it includes all the clicks
that happened between when the data was served and when
the training data was generated. This skew would bias the
resulting model against a different distribution of click rates
compared to what is observed at serving time, which is
likely to affect model quality.

Distribution skew occurs when the distribution of feature
values over a batch of training data is different from that seen
at serving time. To understand why this happens consider
the following scenario. Let us assume that we have a setup
where a sample of today’s serving data is used as the training
data for next day’s model. The sampling is needed since the
volume of data seen at serving time is prohibitively large to
train over. Any flaw in the sampling scheme can result in
training data distributions that look significantly different
from serving data distributions.

Scoring/Serving Skew occurs when only a subset of the
scored examples are actually served. To illustrate this sce-
nario, consider a list of ten recommended videos shown to
the user out of hundred that are scored by the model. Subse-
quently if the user clicks on one of the ten videos, then we
can treat that as a positive example and the other nine as neg-
ative examples for next day’s training. However, the ninety
videos that were never served may not have associated labels
and therefore may never appear in the training data. This es-
tablishes an implicit feedback loop which further increases
the chances of misprediction for lower ranked items, and
consequently less frequent appearance in training data. De-
tecting such types of skew is harder than the other two types.

In addition to validating individual batches of training data,
the Data Validator also monitors for skew between training
and serving data, continuously. Specifically, our serving
infrastructure is configured to log a sample of the serving
data which is imported back into the training pipeline. The
Data Validator component continuously compares batches
of incoming training and serving data to detect different
types of skew. To detect feature skew, the Data Validator
component does a key-join between corresponding batches
of training and serving data followed by a feature wise
comparison. Any detected skew is summarized and
presented to the user using the ML platform’s standard
alerting infrastructure. To detect distribution skew, we
rely on measures that quantify the distance between
distributions, which we discuss below. In addition to skew
detection, each serving data batch is validated against the
schema to detect the anomalies listed in Section 3. We
note that in all cases, the parameters for skew detection are
encoded as additional constraints in the schema.

Quantifying Distribution Distance As mentioned above,
our distribution-skew detection relies on metrics that can
quantify the distance between the training and serving dis-
tributions. It is important to note that, in practice, we expect
these distributions to be different (and hence their distance
to be positive), since the distribution of examples on each
day is in fact different than the last. So the key question is
whether the distance is high enough to warrant an alert.

A first-cut solution here might be to use typical distance
metrics such as KL divergence or cosine similarity and
fire an alert only if the metric crosses a threshold. The
problem with this solution is that product teams have a hard
time understanding the natural meaning of the metric and
thus tuning the threshold to avoid false positives. Another
approach might be to rely on statistical goodness-of-fit tests,
where the alert can be tuned based on common confidence
levels. For instance, one might apply a chi-square test and
alert if the null hypothesis is rejected at the 1% confidence
level. The problem with this general approach, however, is
that the variance of test statistics typically has an inverse

Data Validation for Machine Learning

square relationship to the total number of examples, which
makes these tests sensitive to even minute differences in the
two distributions.

We illustrate the last point with a simple experiment. We
begin with a control sample of 100 million points from a
N(0,1) distribution and then randomly replace 10 thousand
points by sampling from a N(0,2) distribution. This replace-
ment introduces a minute amount of noise (0.01%) in the
original data, for which ML is expected to be resilient. In
other words, a human operator would consider the two dis-
tributions to be the “same”. We then perform a chi-square
test between the two distributions to test their fit. Figure 5
shows the p-value of this test over 10 trials of this exper-
iment, along with the threshold of 1% for the confidence
level. Note that any p-value below the threshold implies that
the test rejects the null hypothesis (that the two distributions
are the same) and would therefore result in a distribution-
skew alert. As shown, this method would needlessly fire an
alert 7 out of 10 times and would most likely be considered
a flaky detection method. We have repeated the same exper-
iment with actual error-free data from one of our product
teams and obtained qualitatively the same results.

To overcome these limitations we focus on distribution-
distance metrics which are resilient to differences we ob-
serve in practice and whose sensitivity can be easily tuned
by product teams. In particular, we use d∞(p, q) =
maxi∈S |pi − qi| as the metric to compare two distribu-
tions p and q with probabilities pi and qi respectively for
each value i (from some universe). Notice that this metric
has several desirable properties. First, it has a simple natural
interpretation of the largest change in probability for a value
in the two distributions, which makes it easier for teams
to set a threshold (e.g., “allow changes of only up to 1%
for each value”). Moreover, an alert comes with a “culprit”
value that can be the starting point of an investigation. For
instance, if the highest change in frequency is observed in
value ’-1’ then this might be an issue with some backend
failing and producing a default value. (This is an actual
situation observed in one of our production pipelines.)

2 4 6 8 10
trial

10 13

10 11

10 9

10 7

10 5

10 3

10 1

p-value, 10K examples altered (out of 100M)
alpha=0.01

Figure 5: Sensitivity of chi-square test.

The next question is whether we can estimate the metric in
a statistically sound manner based on observed frequencies.
We develop a method to do that based on Dirichlet priors.
For more details, see Appendix B.

5 MODEL UNIT TESTING

Up to this point, we focused on detecting mismatches be-
tween the expected and the actual state of the data. Our
intent has been to uncover software errors in generating ei-
ther training or serving data. Here, we shift gears and focus
on a different class of software errors: mismatches between
the expected data and the assumptions made in the training
code. Specifically, recall that our platform (and similar plat-
forms) allow the user to plug in their own training code to
generate the model (see also Figure 1). This code is mostly
a black box for the remaining parts of the platform, includ-
ing the data-validation system, and can perform arbitrary
computations over the data. As we explain below, these
computations may make assumptions that do not agree with
the data and cause serious errors that propagate through the
ML infrastructure.

To illustrate this scenario, suppose that the training code
applies a logarithm transform on a numeric feature, thus
making the implicit assumption that the feature’s value is
always positive. Now, let us assume that the schema does not
encode this assumption (e.g., the feature’s domain includes
non-positive values) and also that the specific instance of
training data happens to carry positive values for this feature.
As a result, two things happen: (a) data validation does not
detect any errors, and (b) the generated model includes the
same transform and hence the same assumption. Consider
now what happens when the model is served and the serving
data happens to have a non-positive value for the feature: the
error is triggered, resulting in a (possibly crashing) failure
inside the serving infrastructure.

The previous example illustrates the dangers of these hidden
assumptions and the importance of catching them before
they propagate through the served models. Note that the
training code can make several other types of assumptions
that are not reflected in the schema, e.g., that a feature
is always present even though it is marked as optional,
or that a feature has a dense shape even though it may
take a variable number of values, to name a few that we
have observed in production. Again, the danger of these
assumptions is that they are not part of the schema (so they
cannot be caught through schema validation) and they may
be satisfied in the specific instance of training data (and so
will not trigger during training).

We base our approach on fuzz testing (Miller et al., 1990),
using the schema to guide the generation of synthetic in-
puts. Specifically, we generate synthetic training examples

Data Validation for Machine Learning

that adhere to the schema constraints. For instance, if the
schema in Figure 3 is used to generate data, each example
will have an event feature, each of which would have one
value, uniformly chosen at random to be either ‘CLICK’
or ‘CONVERSION’. Similarly, integral features would be
random integers from the range specified in the schema, to
name another case. The generation can be seeded so that it
provides a deterministic output.

The generated data is then used to drive a few iterations
of the training code. The goal is to trigger the hidden as-
sumptions in the code that do not agree with the schema
constraints. Returning to our earlier example with the loga-
rithm transform, a synthetic input with non-positive feature
values will cause an error and hence uncover the mismatch
between the schema and the training code. At that point, the
user can fix the training code, e.g., apply the transform on
max(value, 1), or extend the schema to mark the feature
as positive (so that data validation catches this error). Doing
both provides for additional robustness, as it enables alerts
if the data violates the stated assumptions and protects the
generated model from crashes if the data is wrong.

This fuzz-testing strategy is obviously not fool-proof, as
the random data can still pass through the training code
without triggering errors. In practice, however, we found
that fuzz-testing can trigger common errors in the training
code even with a modest number of randomly-generated
examples (e.g., in the 100s). In fact, it has worked so well
that we have packaged this type of testing as a unit test over
training algorithms, and included the test in the standard
templates of our ML platform. Our users routinely execute
these unit tests to validate changes to the training logic of
their pipelines. To our knowledge, this application of unit
testing in the context of ML and for the purpose of data
validation is a novel aspect of our work.

6 EMPIRICAL VALIDATION

As mentioned earlier, our data-validation system has been
deployed in production as part of the standard ML platform
used in a large organization. The system currently analyzes
several petabytes of training and serving data per day and
has resulted in significant savings in engineer hours in two
ways: by catching important data anomalies early (before
they result in a bad model being pushed to production), and
by helping teams diagnose model-quality problems caused
by data errors. In what follows we provide empirical evi-
dence to back this claim. We first report aggregate results
from our production deployment and then discuss in some
detail individual use cases.

Number of schema edits

Pe
rc

en
ta

ge
 o

f p
ip

el
in

es

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

1 [2-5] [5-10] [10-20] [20-50]

Figure 6: Number of manual schema changes by users over
the analysis pipelines.

6.1 Results from Production Deployment

We present an analysis of our system in production, based
on a sample of more than 700 ML pipelines that employ data
validation and train models that are pushed to our production
serving infrastructure.

We first consider the co-evolution of data and schema in
the lifecycle of these pipelines, which is a core tenet of our
approach. Recall that our users go through the following
workflow: (i) when the pipeline is set up, they obtain an
initial schema through our automatic inference, (ii) they
review and manually edit the schema to compensate for any
missing domain knowledge, (iii) they commit the updated
schema to a version control system and start the training part
of the pipeline. Subsequently, when a data alert fires that
indicates a disagreement between the data and the schema,
the user has the option to either fix the data generation
process or update the schema, if the alert corresponds to
a natural evolution of the data. Here we are interested in
understanding the latter changes that reflect the co-evolution
we mentioned.

Figure 6 shows a histogram of this number of schema
changes across the >700 pipelines that we considered. The
graph illustrates that the schema evolves in most of the ex-
amined pipelines, in line with our hypothesis of data-schema
co-evolution.

The majority of cases have up to five schema revisions, with
the distribution tapering off after that point. This evidence
suggests that the input data has evolving properties but is not
completely volatile, which is reasonable in practice. On the
side, we also conclude that the engineers treat the schema as
an important production asset and hence are willing to put
in the effort to keep it up to date. In fact, anecdotal evidence
from some teams suggest a mental shift towards a data-
centric view of ML, where the schema is not solely used for
data validation but also provides a way to document new
features that are used in the pipeline and thus disseminate

Data Validation for Machine Learning

Anomaly Category Used Fired Fixed
given Fired

New feature column (in data
but not in schema)

100% 10% 65%

Out of domain values for cat-
egorical features

45% 6% 66%

Missing feature column (in
schema but not in data)

97% 6% 53%

The fraction of examples
containing a feature is too
small

97% 3% 82%

Too small feature value vec-
tor for example

98% 2% 56%

Too large feature value vec-
tor for example

98% <1% 28%

Data completely missing 100% 3% 65%
Incorrect data type for fea-
ture values

98% <1% 100%

Non-boolean value for
boolean feature type

14% <1% 100%

Out of domain values for nu-
meric features

67% 1% 77%

Table 1: Analysis of data anomalies over the most recent
30-day period for evaluation pipelines. First, we checked
the schemas, to determine what fraction of pipelines could
possibly fire a particular kind of alert (Used). Then, we
looked at each day, and saw what kinds of anomalies Fired,
and calculated what fraction of pipelines had an anomaly
fire on any day. If there were two days with none of this
type of anomaly firing on a pipeline afterward, then we
considered the problem Fixed. This methodology can miss
some fixes, if an anomaly is fixed but a new anomaly of the
same type arrives the next day. It is also possible that an
anomaly appears fixed but wasn’t if a pipeline stopped or
example validation was turned off, but this is less likely.

information across the members of the team.

In our next analysis we examine in more detail how users
interact with the schema. Specifically, we instrumented our
system to monitor the types of data anomalies raised in pro-
duction and the subsequent reactions of the users in terms of
schema updates. Table 1 summarizes the results. As shown,
the most common anomalies are new feature columns,
unexpected string values, and missing feature columns. The
first two are unsurprising: even in a healthy pipeline, there
will be new values for fields such as “postal code”, and new
feature columns are constantly being created by feature engi-
neers. Missing features and missing data are more cause for
concern. We can see from the chart that it is very rare that
the physical type of a feature column is wrong (for example,
someone manually added a feature column with the wrong
type, causing this anomaly); nonetheless, by checking this
we check agreement between the prescriptive nature of the
schema and the actual data on disk. Even in cases where
the anomalies almost never fire, this check is useful.

Table 1 also shows that product teams fix the majority of the
detected anomalies. Now, some anomalies remain unfixed
and we postulate that this happens for two reasons. First, in
some cases a reasonable course of action is to let the anoma-
lous batch slide out of the pipeline’s rolling window, e.g., in
the case of a data-missing anomaly where regenerating the
data is impossible. Second, as we mentioned repeatedly, we
are dealing with a human operator in the loop who might
miss or ignore the alert depending on their cognitive load.
This re-emphasizes the observation that we need to be mind-
ful of how and when we deliver the anomaly alerts to the
on-call operators.

Finally, we turn our attention to the data-validation work-
flow through model unit testing. Again, this unit testing is
part of the standard ML platform in our organization and
so we were able to gather fleet-wide statistics on this func-
tionality. Specifically, more than 70% of pipelines had at
least one model unit test defined. Based on analysis of test
logs over a period of one month, we determined that these
tests were executed more than 80K times (including runs
executed as part of continuous test framework). Of all of
these executions 6% had failures indicating that either the
training code had incorrect assumptions about the data or
the schema itself was under specified.

6.2 Case Studies

In addition to the previous results, we present three case
studies that illustrate the benefits of our system in produc-
tion.

Missing features in Google Play recommender pipeline.
The goal of the Google Play recommender system is to
recommend relevant Android apps to the Play app users
when they visit the homepage of the store, with an aim of
driving discovery of apps that will be useful to the user.
Using the Data Validation system of TFX, Google Play
discovered a few features that were always missing from the
logs, but always present in training. The results of an online
A/B experiment showed that removing this skew improved
the app install rate on the main landing page of the app store
by 2%.

Data debugging leads to model wins. One of the product
teams in our organization employs ML to generate video
recommendations. The product team needed to migrate their
existing training and serving infrastructure onto the new ML
platform that also includes data validation. A prerequisite
for the migration was of course to achieve parity in terms
of model quality. After setting up the new infrastructure,
our data-validation system started generating alerts about
missing features over the serving data. During the ensuing
investigation, the team discovered that a backend system
was storing some features in a different format than expected
which caused these features to be silently dropped in their

Data Validation for Machine Learning

data-parsing code. In this case, the hard part was identify-
ing the features which exhibited the problem (and this is
precisely the information provided by our data-validation
service)– the fix was easy and resulted in achieving perfor-
mance parity. The total time to diagnose and fix the problem
was two days, whereas similar issues have taken months to
resolve.

Stand-alone data validation. Some product teams are set-
ting up ML pipelines solely for the purpose of running our
data-validation system, without doing any training or serv-
ing of models. These teams have existing infrastructure
(predating the ML platform) to train and serve models, but
they are lacking a systematic mechanism for data validation
and, as a result, they are suffering from the data-related
issues that we described earlier in the paper. To address this
shortcoming in their infrastructure, these teams have set up
pipelines that solely monitor the training and serving data
and alert the on-call when an error is detected (while training
and serving still happen using the existing infrastructure).

Feature-store migration. Two product teams have used
our system to validate the migration of their features to
new stores. In this setup, our system was used to apply
schema validation and drift detection on datasets from the
old and new storage systems, respectively. The detected
data errors helped the teams debug the new storage system
and consequently complete the migration successfully.

7 RELATED WORK

As compared to a similar system from Amazon(Schelter
et al., 2018), our design choices and techniques are in-
formed based on wide deployment of our system at Google.
While Amazon’s system allows users to express arbitrary
constraints, we opted to have a restrictive schema definition
language that captures the data constraints for most of our
users while permitting us to develop effective tools to help
users manage their schema. Another differentiating factor
of our work is the emphasis on co-evolution of the schema
with data and the model with the user in the loop.

While model training (Abadi et al., 2016; ker; mxn) is a cen-
tral topic, it is only one component of a machine learning
platform and represents a small fraction of the code (Sculley
et al., 2015). As a result, there is an increasing effort to build
end-to-end machine learning systems (Chandra, 2014; Bay-
lor et al., 2017; Sparks et al., 2017; Böse et al., 2017) that
cover all aspects of machine learning including data manage-
ment (Polyzotis et al., 2017), model management (Vartak,
2017; Fernandez et al., 2016; Schelter et al., 2017), and
model serving (Olston et al., 2017; Crankshaw et al., 2015),
to name a few. In addition, testing and monitoring are nec-
essary to reduce technical debt and ensure product readiness
of machine learning systems (Breck et al., 2017). In com-

parison, this paper specifically focuses on data validation
for production machine learning. In addition we go into
detail on a particular solution to the problem, compared to
previous work that covered in broad strokes the issues re-
lated to data management and machine learning (Polyzotis
et al., 2017).

A topic closely related to data validation is data clean-
ing (Rekatsinas et al., 2017; Stonebraker et al., 2013;
Khayyat et al., 2015; Volkovs et al., 2014) where the state-
of-art is to incorporate multiple signals including integrity
constraints, external data, and quantitative statistics to repair
errors. More recently, several cleaning tools target machine
learning. BoostClean (Krishnan et al., 2017) selectively
cleans out-of-range errors that negatively affect model accu-
racy. Data linter (Hynes et al., 2017) uses best practices to
identify potential issues and efficiencies of machine learn-
ing data. In comparison, our system uses a data-driven
schema utilizing previous data to generate actionable alerts
to users. An interesting direction is to perform root cause
analysis (Wang et al., 2015) that is actionable as well.

Schema generation is commonly done in Database sys-
tems (DiScala & Abadi, 2016) where the main focus is
on query processing. As discussed in Section 1, our contex
is unique in that the schema is reverse-engineered and has
to co-evolve with the data. Moreover, we introduce schema
constraints unique to ML.

Skew detection is relevant to various statistical approaches
including homogeneity tests (Pearson, 1992), analysis of
variance (Fisher, 1921; 1992), and time series analysis (Bas-
seville & Nikiforov, 1993; Ding et al., 2008; Brodersen
et al., 2015). As discussed, our approach is to avoid statisti-
cal tests that lead to false positive alerts and instead rely on
more interpretable metrics of distribution distance, coupled
with sound approximation methods.

The traditional approach of model testing is to select a ran-
dom set of examples from manually labeled datasets (Witten
et al., 2011). More recently, adversarial deep learning tech-
niques (Goodfellow et al., 2014) have been proposed to
generate examples that fool deep neural networks. Deep-
Xplore (Pei et al., 2017) is a whitebox tool for generating
data where models make different predictions. There are
also many tools for traditional software testing. In com-
parison, our model testing uses a schema to generate data
and can thus work for any type of models. The process of
iteratively adjusting the schema is similar in spirit to version
spaces (Russell & Norvig, 2009) and has connections with
teaching learners (Frazier et al., 1996).

Data Validation for Machine Learning

REFERENCES

Keras. https://keras.io/.

Mxnet. https://mxnet.incubator.apache.org/.

Tensorflow examples. https://www.tensorflow.org/
programmers guide/datasets.

Protocol buffers. https://developers.google.com/
protocol-buffers/, 2017.

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean,
J., Devin, M., Ghemawat, S., Irving, G., Isard, M., Kudlur,
M., Levenberg, J., Monga, R., Moore, S., Murray, D. G.,
Steiner, B., Tucker, P., Vasudevan, V., Warden, P., Wicke,
M., Yu, Y., and Zheng, X. Tensorflow: A system for
large-scale machine learning. In OSDI, pp. 265–283,
2016. ISBN 978-1-931971-33-1.

Basseville, M. and Nikiforov, I. V. Detection of Abrupt
Changes: Theory and Application. Prentice-Hall, Inc.,
1993. ISBN 0-13-126780-9.

Baylor, D., Breck, E., Cheng, H.-T., Fiedel, N., Foo, C. Y.,
Haque, Z., Haykal, S., Ispir, M., Jain, V., Koc, L., Koo,
C. Y., Lew, L., Mewald, C., Modi, A. N., Polyzotis,
N., Ramesh, S., Roy, S., Whang, S. E., Wicke, M.,
Wilkiewicz, J., Zhang, X., and Zinkevich, M. TFX: A
tensorflow-based production-scale machine learning plat-
form. In SIGKDD, pp. 1387–1395, 2017. ISBN 978-
1-4503-4887-4. doi: 10.1145/3097983.3098021. URL
http://doi.acm.org/10.1145/3097983.3098021.

Böse, J.-H., Flunkert, V., Gasthaus, J., Januschowski, T.,
Lange, D., Salinas, D., Schelter, S., Seeger, M., and Wang,
Y. Probabilistic demand forecasting at scale. PVLDB, 10
(12):1694–1705, August 2017. ISSN 2150-8097.

Breck, E., Cai, S., Nielsen, E., Salib, M., and Sculley, D.
The ml test score: A rubric for ml production readiness
and technical debt reduction. In IEEE Big Data, 2017.

Brodersen, K. H., Gallusser, F., Koehler, J., Remy, N., and
Scott, S. L. Inferring causal impact using bayesian struc-
tural time-series models. Annals of Applied Statistics, 9:
247–274, 2015.

Chandra, T. Sibyl: a system for large scale machine learn-
ing at Google. In Dependable Systems and Networks
(Keynote), Atlanta, GA, 2014. URL http://www.youtube.
com/watch?v=3SaZ5UAQrQM.

Crankshaw, D., Bailis, P., Gonzalez, J. E., Li, H., Zhang,
Z., Franklin, M. J., Ghodsi, A., and Jordan, M. I. The
missing piece in complex analytics: Low latency, scalable
model management and serving with velox. In CIDR,
2015. URL http://cidrdb.org/cidr2015/Papers/CIDR15
Paper19u.pdf.

Ding, H., Trajcevski, G., Scheuermann, P., Wang, X., and
Keogh, E. Querying and mining of time series data:
Experimental comparison of representations and distance
measures. PVLDB, 1(2):1542–1552, August 2008. ISSN
2150-8097. doi: 10.14778/1454159.1454226. URL http:
//dx.doi.org/10.14778/1454159.1454226.

DiScala, M. and Abadi, D. J. Automatic generation of nor-
malized relational schemas from nested key-value data. In
SIGMOD, pp. 295–310, 2016. ISBN 978-1-4503-3531-7.

Fernandez, R. C., Abedjan, Z., Madden, S., and Stonebraker,
M. Towards large-scale data discovery: Position paper.
In ExploreDB, pp. 3–5, 2016. ISBN 978-1-4503-4312-1.

Fisher, R. A. On the probable error of a coefficient of
correlation deduced from a small sample. Metron, 1:
3–32, 1921.

Fisher, R. A. Statistical Methods for Research Workers, pp.
66–70. Springer-Verlag New York, 1992.

Frazier, M., Goldman, S. A., Mishra, N., and Pitt, L. Learn-
ing from a consistently ignorant teacher. J. Comput. Syst.
Sci., 52(3):471–492, 1996. doi: 10.1006/jcss.1996.0035.
URL https://doi.org/10.1006/jcss.1996.0035.

Frigyik, B. A., Kapila, A., and Gupta, M. R. Introduction
to the dirichlet distribution and related processes. Tech-
nical report, University of Washington Department of
Electrical Engineering, 2010. UWEETR-2010-0006.

Goodfellow, I. J., Shlens, J., and Szegedy, C. Explaining and
harnessing adversarial examples. CoRR, abs/1412.6572,
2014. URL http://arxiv.org/abs/1412.6572.

Hynes, N., Scully, D., and Terry, M. The data linter:
Lightweight, automated sanity checking for ml data sets.
In Workshop on ML Systems at NIPS 2017, 2017.

Khayyat, Z., Ilyas, I. F., Jindal, A., Madden, S., Ouzzani,
M., Papotti, P., Quiané-Ruiz, J.-A., Tang, N., and Yin,
S. Bigdansing: A system for big data cleansing. In
SIGMOD, pp. 1215–1230, 2015.

Krishnan, S., Franklin, M. J., Goldberg, K., and Wu, E.
Boostclean: Automated error detection and repair for
machine learning. CoRR, abs/1711.01299, 2017. URL
http://arxiv.org/abs/1711.01299.

Miller, B. P., Fredriksen, L., and So, B. An empirical study
of the reliability of unix utilities. Commun. ACM, 33
(12):32–44, December 1990. ISSN 0001-0782. doi:
10.1145/96267.96279. URL http://doi.acm.org/10.1145/
96267.96279.

Olston, C., Li, F., Harmsen, J., Soyke, J., Gorovoy, K.,
Lao, L., Fiedel, N., Ramesh, S., and Rajashekhar, V.

https://keras.io/
https://mxnet.incubator.apache.org/
https://www.tensorflow.org/programmers_guide/datasets
https://www.tensorflow.org/programmers_guide/datasets
https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/
http://doi.acm.org/10.1145/3097983.3098021
http://www.youtube.com/watch?v=3SaZ5UAQrQM
http://www.youtube.com/watch?v=3SaZ5UAQrQM
http://cidrdb.org/cidr2015/Papers/CIDR15_Paper19u.pdf
http://cidrdb.org/cidr2015/Papers/CIDR15_Paper19u.pdf
http://dx.doi.org/10.14778/1454159.1454226
http://dx.doi.org/10.14778/1454159.1454226
https://doi.org/10.1006/jcss.1996.0035
http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1711.01299
http://doi.acm.org/10.1145/96267.96279
http://doi.acm.org/10.1145/96267.96279

Data Validation for Machine Learning

Tensorflow-serving: Flexible, high-performance ml serv-
ing. In Workshop on ML Systems at NIPS 2017, 2017.

Pearson, K. On the Criterion that a Given System of De-
viations from the Probable in the Case of a Correlated
System of Variables is Such that it Can be Reasonably
Supposed to have Arisen from Random Sampling, pp.
11–28. Springer-Verlag New York, 1992.

Pei, K., Cao, Y., Yang, J., and Jana, S. Deepxplore: Au-
tomated whitebox testing of deep learning systems. In
SOSP, pp. 1–18, 2017. ISBN 978-1-4503-5085-3.

Polyzotis, N., Roy, S., Whang, S. E., and Zinkevich, M. Data
management challenges in production machine learning.
In SIGMOD, pp. 1723–1726, 2017.

Rekatsinas, T., Chu, X., Ilyas, I. F., and Ré, C. Holoclean:
Holistic data repairs with probabilistic inference. PVLDB,
10(11):1190–1201, August 2017. ISSN 2150-8097.

Russell, S. and Norvig, P. Artificial Intelligence: A
Modern Approach. Prentice Hall Press, Upper Saddle
River, NJ, USA, 3rd edition, 2009. ISBN 0136042597,
9780136042594.

Schelter, S., Boese, J.-H., Kirschnick, J., Klein, T., and
Seufert, S. Automatically tracking metadata and prove-
nance of machine learning experiments. In Workshop on
ML Systems at NIPS 2017, 2017.

Schelter, S., Lange, D., Schmidt, P., Celikel, M., Biess-
mann, F., and Grafberger, A. Automating large-scale
data quality verification. Proc. VLDB Endow., 11(12):
1781–1794, August 2018. ISSN 2150-8097. doi: 10.
14778/3229863.3229867. URL https://doi.org/10.14778/
3229863.3229867.

Sculley, D., Holt, G., Golovin, D., Davydov, E., Phillips,
T., Ebner, D., Chaudhary, V., Young, M., Crespo, J.-F.,
and Dennison, D. Hidden technical debt in machine
learning systems. In NIPS, pp. 2503–2511, 2015. URL
http://dl.acm.org/citation.cfm?id=2969442.2969519.

Sparks, E. R., Venkataraman, S., Kaftan, T., Franklin, M. J.,
and Recht, B. Keystoneml: Optimizing pipelines for
large-scale advanced analytics. In ICDE, pp. 535–546,
2017.

Stonebraker, M., Bruckner, D., Ilyas, I. F., Beskales, G.,
Cherniack, M., Zdonik, S. B., Pagan, A., and Xu, S. Data
curation at scale: The data tamer system. In CIDR, 2013.

Vartak, M. MODELDB: A system for machine learning
model management. In CIDR, 2017.

Volkovs, M., Chiang, F., Szlichta, J., and Miller, R. J. Con-
tinuous data cleaning. In ICDE, pp. 244–255, 2014. doi:
10.1109/ICDE.2014.6816655.

Wang, X., Dong, X. L., and Meliou, A. Data x-ray:
A diagnostic tool for data errors. In SIGMOD, pp.
1231–1245, 2015. ISBN 978-1-4503-2758-9. doi:
10.1145/2723372.2750549. URL http://doi.acm.org/10.
1145/2723372.2750549.

Witten, I. H., Frank, E., and Hall, M. A. Data Mining: Prac-
tical Machine Learning Tools and Techniques. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 3rd
edition, 2011. ISBN 0123748569, 9780123748560.

https://doi.org/10.14778/3229863.3229867
https://doi.org/10.14778/3229863.3229867
http://dl.acm.org/citation.cfm?id=2969442.2969519
http://doi.acm.org/10.1145/2723372.2750549
http://doi.acm.org/10.1145/2723372.2750549

Data Validation for Machine Learning

A CONSTRAINTS IN THE DATA SCHEMA

message Feature {
...

// Limits the distribution drift between training
// and serving data.
FeatureComparator skew_comparator;

// Limits the distribution drift between two
// consecutive batches of data.
FeatureComparator drift_comparator;

}

Figure 7: Extensions to the Feature message of Schema
to check for distribution drifts.

We explain some of these feature level characteristics below
using an instance of the schema shown in Figure 3:

Feature type: One of the key invariants of a feature
is its data type. For example, a change in the data
type from integer to string can easily cause the trainer
to fail and is therefore considered a serious anomaly.
Our schema allows specification of feature types as INT,
FLOAT, and BYTES, which are the allowed types in the
tf.train.Example (tfe) format. In Figure 3, the fea-
ture “event” is marked as of type BYTES. Note that fea-
tures may have richer semantic types, which we capture in
a different part of the schema (explained later).

Feature presence: While some features are expected to
be present in all examples, others may only be expected
in a fraction of the examples. The FeaturePresence
field can be used to specify this expectation of presence.
It allows specification of a lower limit on the fraction
of examples that the feature must be present. For in-
stance, the property presence: {min fraction:
1} for the “event” feature in Figure 3 indicates that this
feature is expected to be present in all examples.

Feature value count: Features can be single valued or lists.
Furthermore, for features that are lists, they may or may
not all be of the same length. These value counts are
important to determine how the values can be encoded into
the low-level tensor representation. The ValueCount
field in the schema can be used to express such properties.
In the example in Figure 3, the feature “event” is indicated
to be a scalar as expressed using the min and max values
set to 1.

Feature domains: While some features may not have a re-
stricted domain (for example, a feature for “user queries”),
many features assume values only from a limited domain.
Furthermore, there may be related features that assume
values from the same domain. For instance, it makes sense
for two features like “apps installed” and “apps used” to
be drawn from the same set of values. Our schema allows
specification of domains both at the level of individual
features as well as at the level of the schema. The named

domains at the level of schema can be shared by all rele-
vant features. Currently, our schema only supports shared
domains for features with string domains.

A domain can also encode the semantic type of the data,
which can be different than the raw type captured by the
TYPE field. For instance, a bytes features may use the val-
ues “TRUE” or “FALSE” to essentially encode a boolean
feature. Another example is an integer feature encoding
categorical ids (e.g., enum values). Yet another example is
a bytes feature that encodes numbers (e.g., values of the
sort “123”). These patterns are fairly common in produc-
tion and reflect common practices in translating structured
data into the flat tf.train.Example format. These
semantic properties are important for both data validation
and understanding, and so we allow them to be marked
explicitly in the domain construct of each feature.

Feature life cycle: The feature set used in a machine
learning pipeline keeps evolving. For instance, ini-
tially a feature may be introduced only for experimen-
tation. After sufficient trials, it may be promoted to a
beta stage before finally getting upgraded to be a pro-
duction feature. The gravity of anomalies in the fea-
tures at different stages is different. Our schema al-
lows tagging of features with the stage of life cycle that
they are currently in. The current set of stages sup-
ported are UNKNOWN_STAGE, PLANNED, ALPHA, BETA,
PRODUCTION, DEPRECATED, and DEBUG_ONLY

Figure 2 only shows only a fragment of the constraints that
can be expressed by our schema. For instance, our schema
can encode how groups of features can encode logical se-
quences (e.g., the sequence of queries issued by a user where
each query can be described with a set of features), or can
express constraints on the distribution of values over the
feature’s domain. We will cover some of these extensions
in Section 4, but we omit a full presentation of the schema
in the interest of space.

B STATISTICAL SIGNIFICANCE OF
MEASUREMENTS OF DRIFT

Suppose that we have two days of data, and we have some
measure of their distance? As we discussed in Section 4,
this measure will never be zero, as some real drift is always
expected. However, how do we know if we can trust such a
measurement?

Specifically, suppose that there is a set S where |S| = n
of distinct observations we can make, and ∆(S) is the
set of all distributions over S. Without loss of general-
ity, we assume S = {1 . . . n}. In one dataset, there are
mp observations P1 . . . Pmp ∈ S with an empirical dis-
tribution p̂ = p̂1 . . . p̂n. In a second dataset, there are

Data Validation for Machine Learning

mq observations Q1 . . . Qmq
with an empirical distribu-

tion q̂ = q̂1 . . . q̂n. We can assume that the elements
in P1 . . . Pmp were drawn independently from some dis-
tribution p = p1 . . . pn, that was in turn drawn from a
fixed Dirichlet prior(Frigyik et al., 2010) Dir(α) where
α = (1 . . . 1) (a uniform density over the simplex), and sim-
ilarly, Q1 . . . Qmq

were drawn independently from some
distribution q = q1 . . . qn, that was in turn drawn from the
same fixed Dirichlet prior.

If we have a particular measure d : ∆(S) × ∆(S) → R,
we have two options. First, we could measure the empirical
drift d(p̂, q̂). Or we could attempt to estimate the theoretical
drift d(p, q). Although p and q are not directly observed,
the latter can be achieved more easily than one might ex-
pect. First of all, the posterior distribution over p given the
observations P1 . . . Pmp

is simply Dir(α+mpp̂), and the
posterior distribution of q is Dir(α+mq q̂) (see Section 1.2
in (Frigyik et al., 2010)). Thus, one can get a sample from
the posterior distribution of d(p, q) by sampling p′ from
Dir(α + mpp̂) (see Section 2.2 in (Frigyik et al., 2010))
and q′ from Dir(α+mq q̂) and calculating d(p′, q′).

One metric we use is d1(p, q) =
∑n

i=1 |pi − qi|. The advan-
tage of d1 is that it corresponds to how visually distinguish-
able two distributions are (see Figure 8). Consider a field
that has 100 values that are all equally likely. If all values are
uppercase instead of lowercase, then the d∞(p, q) = 0.01,
but d1(p, q) = 1 (the highest possible value).

What we find, if estimate the theoretical drift as described
above, is that when mp and mq are at least a billion and
n < 100, then d(p, q) is very close to d(p̂, q̂). In other
words, for the datasets that we care about, the empirical
drift d∞(p̂, q̂) is a sound approximation of the theoretical
drift.

Moreover, the empirical drift of d1 can be visualized:

Figure 8: Two distributions, white and black are compared.
When overlaying them, the difference can be “seen”. The
sum of the magnitude of these visible differences is the d1
distance.

The connection to visualization is important: for instance,
if we observe a high KL divergence, Kolmogorov-Smirnov
statistic, or a low cosine similiarity, it is likely that the first
thing a human will do is look at the two distributions and
visually inspect them. The scenarios where the L1 distance
is low but the KL divergence is high correspond to when

very small probabilities (10−6) become less small (10−3). It
is unclear whether such small fluctuations on the probability
of rare features are cause for concern in general, whereas
the magnitude of d1 directly corresponds to the number of
examples impacted, which in turn can affect performance.

