
KERNEL MACHINES THAT ADAPT TO GPUS FOR
EFFECTIVE LARGE BATCH TRAINING

Siyuan Ma 1 Mikhail Belkin 1

ABSTRACT
Modern machine learning models are typically trained using Stochastic Gradient Descent (SGD) on massively
parallel computing resources such as GPUs. Increasing mini-batch size is a simple and direct way to utilize the
parallel computing capacity. For small batch an increase in batch size results in the proportional reduction in the
training time, a phenomenon known as linear scaling. However, increasing batch size beyond a certain value
leads to no further improvement in training time. In this paper we develop the first analytical framework that
extends linear scaling to match the parallel computing capacity of a resource. The framework is designed for a
class of classical kernel machines. It automatically modifies a standard kernel machine to output a mathemati-
cally equivalent prediction function, yet allowing for extended linear scaling, i.e., higher effective parallelization
and faster training time on given hardware.

The resulting algorithms are accurate, principled and very fast. For example, using a single Titan Xp GPU,
training on ImageNet with 1.3 ⇥ 106 data points and 1000 labels takes under an hour, while smaller datasets,
such as MNIST, take seconds. As the parameters are chosen analytically, based on the theoretical bounds, little
tuning beyond selecting the kernel and the kernel parameter is needed, further facilitating the practical use of
these methods.

1 INTRODUCTION

Modern machine learning models are trained using
Stochastic Gradient Descent (SGD) on parallel computing
resources such as GPUs. During training we aim to min-
imize the (wall clock) training time Ttrain given a compu-
tational resource, e.g., a bank of GPUs. Although using
larger batch size m improves resource utilization, it does
not necessarily lead to a reduction in training time. In-
deed, we can decompose the training time Ttrain(m) into
two parts,

Ttrain(m) = Nepoch(m)⇥ Tepoch(m)

where Nepoch(m) is the number of training epochs required
for convergence and Tepoch(m) is the wall clock time to
train for one epoch. It is easy to see that increasing m
always leads to higher resource utilization, thus decreas-
ing Tepoch(m). However, Nepoch(m) may increase with m.
In fact, for a general class of convex problems it can be
shown (Ma et al., 2017) Nepoch(m) is approximately con-
stant for m no more than a certain critical size m⇤ and

1Department of Computer Science and Engineering, Ohio
State University, Columbus, Ohio, United States. Correspondence
to: Siyuan Ma <masi@cse.ohio-state.edu>, Mikhail Belkin
<mbelkin@cse.ohio-state.edu>.

Proceedings of the 2nd SysML Conference, Palo Alto, CA, USA,
2019. Copyright 2019 by the author(s).

Nepoch(m) / m for m > m⇤. On the other hand Tepoch(m)
is at best1 decreases proportionally to 1/m. Thus the train-
ing time is at least

Ttrain(m) =

⇢
1/m, for m m⇤

const, for m > m⇤

In other words, we obtain linear speedup (“linear scaling”)
for batch sizes up to m⇤, beyond which the training time
cannot be improved by further increasing m. Furthermore,
an important property of m⇤ is its near independence from
the number of training samples as it is primarily determined
by the model and the data distribution.

Similar relationship between the batch size and the training
time has been observed empirically in training deep neural
networks (Krizhevsky, 2014). A heuristic called the “linear
scaling rule” has been widely used in deep learning prac-
tice (Goyal et al., 2017; You et al., 2017; Jia et al., 2018).
Moreover, in parallel to the convex case analyzed in (Ma
et al., 2017), recent work (Golmant et al., 2018; McCan-
dlish et al., 2018) empirically demonstrates that m⇤ is in-
dependent of the data size for deep neural networks.

Many best practices of modern large-scale learning (Goyal
et al., 2017; You et al., 2017; Jia et al., 2018) start with
estimating m⇤ by either heuristic rules or experiments. The

1Assuming perfect parallel computation.

Kernel machines that adapt to GPUs for effective large batch training

optimal training time for the model is then capped by the
estimated batch size m⇤ which is fixed given the model
architecture and weight, as well as the learning task.

In this work we propose a principled framework (EigenPro
2.0) that increases m⇤ for a class of models corresponding
to classical kernel machines. Our framework modifies a
kernel machine to output a mathematically equivalent pre-
diction function, yet allowing for extended linear scaling
adaptive to (potentially) arbitrary parallel computational
resource. Furthermore, the optimization parameter selec-
tion is analytic, making it easy and efficient to use in prac-
tice and appropriate for “interactive” exploratory machine
learning and automatic model selection. The resulting al-
gorithms show significant speedup for training on GPUs
over the state-of-the-art methods and excellent generaliza-
tion performance.

Kernel machines. Kernel machines are a powerful class of
methods for classification and regression. Given the train-
ing data {(xxxi, yi), i = 1, . . . , n} 2 Rd ⇥ R, and a posi-
tive definite kernel k : Rd ⇥ Rd ! R, kernel machines
construct functions of the form f(xxx) =

P
i ↵ik(xxx,xxxi).

These methods are theoretically attractive, show excellent
performance on small datasets, and are known to be uni-
versal learners, i.e., capable of approximating any func-
tion from data. However, making kernel machines fast and
scalable to large data has been a challenging problem. Re-
cent large scale efforts typically involved significant paral-
lel computational resources, such as multiple (sometimes
thousands) AWS vCPU’s (Tu et al., 2016; Avron et al.,
2016) or super-computer nodes (Huang et al., 2014). Very
recently, FALKON (Rudi et al., 2017) and EigenPro (Ma &
Belkin, 2017) showed strong classification results on large
datasets with much lower computational requirements, a
few hours on a single GPU.

The main problem and our contribution. The main
problem addressed in this paper is to minimize the training
time for a kernel machine, given access to a parallel
computational resource G . Our main contribution is that
given a standard kernel, we are able to learn a new data and
computational resource dependent kernel to minimize the
resource time required for training without changing the
mathematical solution for the original kernel. Our model
for a computational resource G is based on a modern
graphics processing unit (GPU), a device that allows for
very efficient, highly parallel2 matrix multiplication.

The outline of our approach is shown in the diagram on the
right. We now outline the key ingredients.

The interpolation framework. In recent years we have
2For example, there are 3840 CUDA cores in Nvidia GTX

Titan Xp (Pascal).

seen that inference methods, notably neural networks, that
interpolate or nearly interpolate the training data gen-
eralize very well to test data (Zhang et al., 2016). It
has been observed in (Belkin et al., 2018) that mini-
mum norm kernel interpolants, i.e., functions of the forms
f(xxx) =

P
i ↵ik(xxx,xxxi), such that f(xxxi) = yi, achieve op-

timal or near optimal generalization performance. While
the mathematical foundations of why interpolation pro-
duces good test results are not yet fully understood, the
simplicity of the framework can be used to accelerate
and scale the training
of classical kernel meth-
ods, while improving
their test accuracy. In-
deed, constructing these
interpolating functions is
conceptually and mathe-
matically simple, requir-
ing approximately solv-
ing a single system of
linear equations with a
unique solution, same
for both regression and
classification. Signifi-
cant computational sav-
ings and, when neces-
sary, regularization (Yao
et al., 2007) are provided
by early stopping, i.e.,
stopping iterations well
before numerical conver-
gence, once successive
iterations fail to improve
validation error.

Adaptivity to data and computational resource: choos-
ing optimal batch size and step size for SGD. We will
train kernel methods using Stochastic Gradient Descent
(SGD), a method which is well-suited to modern GPU’s
and has shown impressive success in training neural net-
works. Importantly, in the interpolation framework, depen-
dence of convergence on the batch size and the step size
can be derived analytically, allowing for full analysis and
automatic parameter selection.

We first note that in the parallel model each iteration of
SGD (essentially a matrix multiplication) takes the same
time for any mini-batch size up to mmax

G , defined as the
mini-batch size where the parallel capacity of the resource
G is fully utilized. It is shown in (Ma et al., 2017) that in
the interpolation framework convergence per iteration (us-
ing optimal step size) improves nearly linearly as a func-
tion of the mini-batch size m up to a certain critical size
m⇤(k) and rapidly saturates after that. The quantity m⇤(k)
is related to the spectrum of the kernel. For kernels used

Kernel machines that adapt to GPUs for effective large batch training

in practice it is typically quite small, less than 10, due to
their rapid eigenvalue decay. Yet, depending on the num-
ber of data points, features and labels, a modern GPU can
handle mini-batches of size 1000 or larger. This disparity
presents an opportunity for major improvements in the ef-
ficiency of kernel methods. In this paper we show how to
construct data and resource adaptive kernel kG , by modi-
fying the spectrum of the kernel by using EigenPro algo-
rithm (Ma & Belkin, 2017). The resulting iterative method
with the new kernel has similar or better convergence per it-
eration than the original kernel k for small mini-batch size.
However its convergence improves linearly to much larger
mini-batch sizes, matching mmax

G , the maximum that can
be utilized by the resource G . Importantly, SGD for either
kernel converge to the same interpolated solution.

Figure 1: Adaptive and original kernel

Thus, we aim to modify the kernel by constructing a kernel
kG , such that m⇤(kG) = mmax

G without changing the op-
timal (interpolating) solution. This is shown schematically
in Figure 1. We see that for small mini-batch size conver-
gence of these two kernels k and kG is similar. However,
values of m > m⇤(k) do not help the convergence of the
original kernel k, while convergence of kG keep improving
up to m = mmax

G , where the resource utilization is satu-
rated. For empirical results on real datasets, parallel to the
schematic shown above, see Figure 2 in Section 5.

We construct and implement these kernels (see
github.com/EigenPro/EigenPro2 for the code), and
show how to analytically choose parameters, including
the batch size and the step size. As a secondary con-
tribution of this work we develop an improved version
of EigenPro (Ma & Belkin, 2017) significantly reducing
the memory requirements and making the computational
overhead over the standard SGD negligible.

Comparison to related work. In recent years there has
been significant progress on scaling and accelerating kernel
methods including (Takác et al., 2013; Huang et al., 2014;
Lu et al., 2014; Tu et al., 2016; Avron et al., 2016; May
et al., 2017). Most of these methods are able to scale to
large data sets by utilizing major computational resources
such as supercomputers or multiple (sometimes hundreds
or thousands) AWS vCPU’s3. Two recent methods which
allow for high efficiency kernel training with a single CPU
or GPU is EigenPro (Ma & Belkin, 2017) (used a as basis
for the adaptive kernels in this paper) and FALKON (Rudi
et al., 2017). The method developed in this paper is signifi-
cantly faster than either of them, while achieving similar or
better test set accuracy. Additionally, it is easier to use as
much of the parameter selection is done automatically.

Mini-batch SGD (used in our algorithm) has been the domi-
nant technique in training deep models. There has been sig-
nificant empirical evidence (Krizhevsky, 2014; You et al.,
2017; Smith et al., 2017) showing that linearly scaling the
step size with the mini-batch size up to a certain value leads
to improved convergence. This phenomenon has been uti-
lized to scale deep learning in distributed systems by adopt-
ing large mini-batch sizes (Goyal et al., 2017).

The advantage of our setting is that the optimal batch
and step sizes can be analyzed and expressed analytically.
Moreover, these formulas contain variables which can
be explicitly computed and directly used for parameter
selection in our algorithms. Going beyond batch size and
step size selection, the theoretical interpolation framework
allows us to construct new adaptive kernels, such that the
mini-batch size required for optimal convergence matches
the capacity of the computational resource.

The paper is structured as follows: In Section 3, we present
our main algorithm to learn a kernel to fully utilize a given
computational resource. In Section 4, we present an im-
proved version of EigenPro iteration used by the main al-
gorithm. We then provide comparisons to state-of-the-art
kernel methods on several large datasets in Section 5. We
further discuss exploratory machine learning in the context
of our method.

2 SETUP

We start by briefly discussing the basic setting and kernel
methods used in this paper.

Kernel interpolation. We are given n labeled training
points (xxx1, y1), . . . , (xxxn, yn) 2 Rd ⇥ R. We consider a
Reproducing Kernel Hilbert Space (RKHS) H (Aronszajn,
1950) corresponding to a positive definite kernel function

3See http://aws.amazon.com/ec2 for details.

https://github.com/EigenPro/EigenPro2
http://aws.amazon.com/ec2

Kernel machines that adapt to GPUs for effective large batch training

k : Rd ⇥ Rd ! R. There is a unique (minimum norm)
interpolated solution in Hof the form

f⇤(·) =
nX

i=1

↵⇤
i k(xxxi, ·),

where (↵⇤
1, . . . ,↵

⇤
n)

T = K�1(y1, . . . , yn)
T

Here K denotes an n ⇥ n kernel matrix, Kij = k(xxxi,xxxj).
It is easy to check that 8if⇤(xi) = yi.
Remark 2.1 (Square loss). While the interpolated solu-
tion f⇤ in H does not depend on any loss function, it is
the unique minimizer in H for the empirical square loss
L(f) , 1

n

Pn
i=1(f(xxxi)� yi)2.

Gradient descent. It can be shown that gradient descent
iteration for the empirical squared loss in RKHSH is given
by

f f � ⌘ · 2
n

nX

i=1

(f(xxxi)� yi)k(xxxi, ·) (1)

Mini-batch SGD. Instead of calculating the gradient with
n training points, each SGD iteration updates the solution
f using m subsamples (xxxt1 , yt1), . . . , (xxxtm , ytm),

f f � ⌘ · 2

m

(
mX

i=1

(f(xxxti)� yti)k(xxxti , ·)
)

(2)

It is equivalent to randomized coordinate descent (Leven-
thal & Lewis, 2010) for K↵↵↵ = yyy on m coordinates of ↵↵↵,

↵ti ↵ti � ⌘ · 2

m
{f(xxxti)� yti} for i = 1, . . . ,m (3)

Critical mini-batch size as effective parallelism. Theo-
rem 4 in (Ma et al., 2017) shows that for mini-batch itera-
tion (2) with kernel k there is a data-dependent batch size
m⇤(k) such that

• Convergence per iteration improves linearly with in-
creasing batch sizem for m m⇤(k) (using optimal
constant step size).

• Training with any batch size m > m⇤(k) leads to the
same convergence per iteration as training with m⇤(k)
up to a small constant factor.

We can calculate m⇤(k) explicitly using kernel matrix K
(depending on the data),

m⇤(k) =
�(K)

�1(K)
where �(K) , max

i=1,...,n
k(xxxi,xxxi)

For any shift invariant kernel k, after normalization, we
have �(K) = maxni=1 k(xxxi,xxxi) ⌘ 1.

EigenPro iteration (Ma & Belkin, 2017). To achieve
faster convergence, EigenPro iteration performs spec-
tral modification on the kernel operator K(f) ,
2
n

Pn
i=1hk(xxxi, ·), fiHk(xxxi, ·) using operator,

P(f) , f �
qX

i=1

(1� �q

�i
)hei, fiHei (4)

where �1 � · · · � �n are ordered eigenvalues of K and ei
is its eigenfunction corresponding to �i. The iteration uses
P to rescale a (stochastic) gradient in H,

f f � ⌘ ·P
(

2

m

mX

i=1

(f(xxxti)� yti)k(xxxti , ·)
)

(5)

Remark 2.2 (Data adaptive kernel for fast optimization).
EigenPro iteration for target function y and kernel k is
equivalent to Richardson iteration / randomized (block)
coordinate descent for linear system KP↵↵↵ = yyy

P
,

(Pf⇤(xxx1), . . . ,Pf⇤(xxxn))T . Here KP is the kernel ma-
trix corresponding to a data-dependent kernel kP. When
n ! 1, it has the following expansion according to Mer-
cer’s theorem,

kP(xxx,zzz) =
qX

i=1

�qei(xxx)ei(zzz) +
1X

i=q+1

�iei(xxx)ei(zzz) (6)

For n <1, it is a modification of the original kernel k,

kP(xxx,zzz) = P{k(xxx, ·)}(zzz)

⇡ k(xxx,zzz)�
qX

i=1

(�i � �q)ei(xxx)ei(zzz)

Remark 2.3 (Preconditioned linear system / gradient de-
scent). KP↵↵↵ = yyy

P
is equivalent to the preconditioned

linear system PK↵↵↵ = Pyyy where P is a left matrix pre-
conditioner related to P. Accordingly, P is the operator
preconditioner for preconditioned (stochastic) gradient de-
scent (5).

Abstraction for parallel computational resources. To
construct a resource adaptive kernel, we consider the fol-
lowing abstraction for given computational resource G ,

• CG : Parallel capacity of G , i.e., the number of parallel
operations that is required to fully utilize the comput-
ing capacity of G .

• SG : Internal resource memory of G .

To fully utilize G , one SGD / EigenPro iteration must exe-
cute at least CG operations using less than SG memory. In
this paper, we primarily adapt kernel to GPU devices. For a
GPU G , SG equals the size of its dedicated memory and CG
is proportional to the number of the computing cores (e.g.,
3840 CUDA cores in Titan Xp). Note for computational
resources like cluster and supercomputer, we need to take
into account additional factors such as network bandwidth.

Kernel machines that adapt to GPUs for effective large batch training

3 MAIN ALGORITHM

Our main algorithm aims to reduce the training time by
constructing a data/resource adaptive kernel for any given
kernel function k to fully utilize a computational resource
G . Its detailed workflow is presented on the right. Specifi-
cally, we use the following steps:

Step 1. Calculate the resource-dependent mini-batch size
mmax

G to fully utilize resource G .

Step 2. Identify the parameters and construct a new kernel
kG such that m⇤(kG) = mmax

G .

Step 3. Select optimal step size and train using improved
EigenPro (see Section 4).

EigenPro 2.0

Note that due to prop-
erties of EigenPro
iteration, training with
this adaptive kernel
converges to the same
solution as the original
kernel.

To calculate mmax
G

for 100% resource
utilization, we first
estimate the opera-
tion parallelism and
memory usage of one
EigenPro iteration. The
improved version of
EigenPro iteration (in-
troduced in Section 4)
makes computation
and memory overhead
over the standard SGD
negligible (see Ta-
ble 1). Thus we assume
that EigenPro has the
same complexity as
the standard SGD per
iteration.

Cost of one EigenPro
iteration with batch
size m. We consider
training data (xxxi, yyyi) 2
Rd ⇥ Rl, i = 1, . . . , n.
Here each feature vec-
tor xxx is d dimensional,
and each label yyy is l di-
mensional.

• Computational cost. It takes (d + l) · m · n oper-
ations to perform one SGD iteration on m points as

in Iteration (2). These computations reduce to matrix
multiplication and can be done in parallel.

• Space usage. It takes d·n memory to store the training
data (as kernel centers) and l · n memory to maintain
the model weight. Additionally we need to store a
m · n kernel matrix for the prediction on the mini-
batch. In total, we need (d+ l +m) · n memory.

We can now calculate mmax
G for the parallel computational

resource G with parameters CG , SG and introduced in Sec-
tion 2.

Step 1: Determining batch size mmax
G for 100% re-

source utilization. We first define two mini-batch nota-
tions:

• mCG : batch size for fully utilizing parallelism in G
such that (d+ l) ·mCG · n ⇡ CG .

• mSG : batch size for maximum memory usage of G
such that (d+ l +mSG) · n ⇡ SG .

To best utilize G without exceeding its memory, we set
mmax

G = min{mCG ,mSG}. Note that in practice, it is more
important to fully utilize the memory so that mmax

G . mSG .

Step 2: Learning the kernel kG given mmax
G . Next, we

show how to construct kG = kPq using EigenPro iteration
such that m⇤(kG) = mmax

G . The corresponding q is defined
as

q , max {i 2 N, s.t. m⇤(kPi) mmax
G } (7)

To compute q recall that m⇤(kPq) =
�(KPq)

�1(KPq)
, where KPq

is the kernel matrix corresponding to the kernel function
kPq . Using the definition of Pq and � in Section 2, we
have
�1(KPq) = �q(K)

�(KPq) ⇡ max
i=1,...,n

kPq (xxxi,xxxi)

= max
i=1,...,n

{k(xxxi,xxxi)�
qX

j=1

(�j � �q)ei(xxxi)
2}

In practice, �(KPq) can be accurately estimated using the
maximum of kPq (xxx,xxx) on a small number of subsamples.
Similarly, we can estimate �q(K) on a subsample kernel
matrix. Knowing the approximate top eigenvalues of K,
allows us to efficiently compute m⇤(kPp) for each p, thus
allowing to choose q from (7).

Step 3: Training with adaptive kernel kG = kPq . We use
the learned kernel kG with improved EigenPro (Section 4).
Its optimization parameters (batch and step size) are calcu-
lated as follows:

m = mmax
G , ⌘ =

mmax
G

�(KG)

Kernel machines that adapt to GPUs for effective large batch training

Claim (Acceleration). Using the adaptive kernel kG de-
creases the resource time required for training (assuming an
idealized model of the GPU and workload) over the origi-
nal kernel k by a factor of

acceleration of kG over k =
�(K)

�(KG)
·
mmax

G

m⇤(k)

See the Appendix C for the derivation and a discussion.
We note that empirically, �(KG) ⇡ �(K), while mmax

G
m⇤(k) is

between 50 and 500, which is in line with the acceleration
observed in practice.
Remark 3.1 (Choice of q). Note that it is not important to
select q exactly, according to Eq. 7. In fact, choosing kPp

for any p > q allows for the same acceleration as kPq as
long as the mini-batch size is chosen to be mmax

G and the
step size is chosen accordingly. Thus, we can choose any
value p > q for our adaptive kernel kPp . However, choos-
ing p larger than q incurs an additional computation cost
as p eigenvalues and eigenvectors of K need to be approxi-
mated accurately. In particular, larger subsample size s (see
Section 4 may be needed for approximating eigenvectors.

4 IMPROVED EIGENPRO ITERATION
USING NYSTRÖM EXTENSION

In this section, we present an improvement for the Eigen-
Pro iteration originally proposed in (Ma & Belkin, 2017).
We significantly reduce the memory overhead of Eigen-
Pro over standard SGD and nearly eliminate computa-
tional overhead per iteration. The improvement is based on
an efficient representation of the preconditioner Pq using
Nyström extension.

We start by recalling the EigenPro iteration in RKHS and
its preconditioner constructed by the top-q eigensystem
�i, ei of the kernel operator K:

f f � ⌘ ·Pq

(
2

m

mX

i=1

(f(xxxti)� yti)k(xxxti , ·)
)

where Pq(f) = f �
qX

i=1

(1� �q

�i
)hei, fiHei

The key to construct the above iteration is to obtain an accu-
rate and computationally efficient approximation of �i, ei
such that Kei ⇡ �iei. The original EigenPro iteration
learns an approximate ei of the form

Pn
j=1 wjk(xxxj , ·). In

contrast, our improved version of Eigenpro uses only a
small number of subsamples xxxr1 , . . . ,xxxrs to learn an ei
of the form

Ps
j=1 wjk(xxxrj , ·). This compact representa-

tion (s versus n) nearly eliminates per-iteration overhead
of EigenPro over SGD. Importantly, there is no associated
accuracy reduction as this is the same subset used in the
original EigenPro to approximate Pq .

Algorithm 1 Improved EigenPro iteration
(double coordinate block descent)

Input: Kernel function k(xxx,zzz), EigenPro parameter q,
mini-batch size m, step size ⌘, size of fixed coordinate
block s

initialize model parameter ↵↵↵ = (↵1, . . . ,↵n)T 0
subsample s coordinate indices r1, . . . , rs 2 {1, . . . , n}
for constructing Pq , which form fixed coordinate block
↵↵↵r , (↵r1 , . . . ,↵rs)

T

compute top-q eigenvalues ⌃ , diag(�1, . . . ,�q) and
corresponding eigenvectors V , (eee1, . . . , eeeq) of sub-
sample kernel matrix Ks = [k(xxxri ,xxxrj)]

s
i,j=1

for t = 1, . . . do
1. sample a mini-batch (xxxt1 , yt1), . . . , (xxxtm , ytm)
2. calculate predictions on the mini-batch

f(xxxtj) =
nX

i=1

↵ik(xxxi,xxxtj) for j = 1, . . . ,m

3. update sampled coordinate block corresponding
to the mini-batch ↵↵↵t , (↵t1 , . . . ,↵tm),

↵↵↵t ↵↵↵t � ⌘ · 2

m
(f(xxxt1)� yt1 , . . . , f(xxxtm)� ytm)T

4. evaluate the following feature map �(·) on the mini-
batch features xxxt1 , . . . ,xxxtm :

�(xxx) , (k(xxxr1 ,xxx), . . . , k(xxxrs ,xxx))
T

5. update fixed coordinate block ↵↵↵r to apply Pq ,

↵↵↵r ↵↵↵r + ⌘ · 2

m

mX

i=1

(f(xxxti)� yti) · V DV T �(xxxti)

where D , (1� �q · ⌃�1)⌃�1

end for

Next, we show how to approximate �i, ei. We first consider
a related linear system for subsamples xxxr1 , . . . ,xxxrs 2 Rd:
Kseeei = �ieeei where Ks , [k(xxxri ,xxxrj)]

s
i,j=1 is a subsample

kernel matrix and �i, eeei is its eigenvalue/eigenvector. This
rank-s linear system is in fact a discretization of Kei =
�iei in the RKHS.

The two eigensystems, �i, eeei and �i, ei are connected
through Nyström extension. Specifically, the Nyström ex-
tension of ei on subsamples xxxr1 , . . . ,xxxrs approximates ei
as follows:

ei(·) ⇡
1

�i

sX

j=1

ei(xxxrj)k(xxxrj , ·)

Evaluating both side on xxxr1 , . . . ,xxxrs , we have

�i ⇡
�i

s
, ei(·) ⇡

1
p
�i
eeeTi �(·)

Kernel machines that adapt to GPUs for effective large batch training

where �(·) , (k(xxxr1 , ·), . . . , k(xxxrs , ·))T is a kernel feature
map. Thus we approximate the top-q eigensystem of K us-
ing the top-q eigensystem of Ks. These (low-rank) approx-
imations further allow us to apply Pq for efficient EigenPro
iteration on mini-batch (xxxt1 , yt1) . . . , (xxxtm , ytm),

f f � ⌘ · 2

m

mX

i=1

(f(xxxti)� yti)k(xxxti , ·)

+ ⌘ · 2

m

mX

i=1

(f(xxxti)� yti) · �(xxxti)
TV DV T �(·)

where D , ⌃�1(1� �q · ⌃�1)

(8)

where ⌃ , diag(�1, · · · ,�q) and V , (eee1, · · · , eeeq) are
top-q eigensystem of Ks.

Recalling that f =
Pn

i=1 ↵ik(xxxi, ·), the above iteration
can be executed by updating two coordinate blocks of the
parameter vector ↵↵↵ as in Algorithm 1.

Computation/memory per iteration. In Algorithm 1, the
cost of each iteration relates to updating two coordinate
blocks. Notably, Steps 2-3 is exactly the standard SGD.
Thus the overhead of our method comes from Steps 4-5.
We compare our improved EigenPro to the original Eigen-
Pro and to standard SGD in Table 1. We see that the over-
head of original EigenPro (in bold) scales with the data size
n. In contrast, improved EigenPro depends only on the
fixed coordinate block size s which is independent of n.
Hence, when n becomes large, the overhead of our itera-
tion becomes negligible (both in computation and memory)
compared to the cost of SGD.

Computation Memory
Improved EigenPro s ·mqs ·mqs ·mq + n ·m(d+ l) s · qs · qs · q + n · (m+ d+ l)
Original EigenPro n ·mqn ·mqn ·mq + n ·m(d+ l) n · qn · qn · q + n · (m+ d+ l)

SGD n ·m(d+ l) n · (m+ d+ l)

Table 1: Overhead over SGD is bolded. n: training data size,
m: batch size, d: feature dim., s: fixed coordinate block size, q:
EigenPro parameter, l: number of labels.

To give a realistic example, for many of our experiments
n = 106, while s is chosen to be 104. We typically have
d,m of the same order of magnitude 103, while q and l
around 102. This results in overhead of EigenPro of less
than 1% over SGD for both computation and memory.

5 EXPERIMENTAL EVALUATION

Computing resource. We run all experiments on a single
workstation equipped with 128GB main memory, two Intel
Xeon(R) E5-2620 processors, and one Nvidia GTX Titan
Xp (Pascal) GPU.

Datasets. We reduce multiclass labels to multiple bi-
nary labels. For image datasets including MNIST (Le-
Cun et al., 1998), CIFAR-10 (Krizhevsky & Hinton, 2009),
and SVHN (Netzer et al., 2011), color images are first
transformed to grayscale images. We then rescale the
range of each feature to [0, 1]. For ImageNet (Deng et al.,
2009), we use the top 500 PCA components of some
convolutional features extracted from Inception-ResNet-
v2 (Szegedy et al., 2017). For TIMIT (Garofolo et al.,
1993), we normalize each feature by z-score.

Choosing the size of the fixed coordinate block s. We
choose s according to the size of the training data, n. When
n 105, we choose s = 2 ·103; when n > 105, we choose
s = 1.2 · 104.

5.1 Comparison to state-of-the-art kernel methods

In Table 2, we compare our method to the state-of-the-art
kernel methods on several large datasets. For all datasets,
our method is significantly faster than other methods while
still achieving better or similar results. Moreover, our
method uses only a single GPU while many state-of-the-
art kernel methods use much less accessible computing re-
sources.

Among all the compared methods, FALKON (Rudi et al.,
2017) and EigenPro (Ma & Belkin, 2017) stand out for
their competitive performance and fast training on a single
GPU. Notably, our method still achieves 5X-6X accelera-
tion over FALKON and 5X-14X acceleration over Eigen-
Pro with mostly better accuracy. Importantly, our method
has the advantage of automatically inferring parameters for
optimization. In contrast, parameters related to optimiza-
tion for FALKON and EigenPro need to be selected by
cross-validation.

5.2 Convergence comparison to SGD and EigenPro

In Figure 2, we train three kernel machines with Eigen-
Pro 2.0, standard SGD and EigenPro (Ma & Belkin, 2017)
for various batch sizes. The step sizes for SGD and Eigen-
Pro are tuned for best performance. The step size for Eigen-
Pro 2.0 is computed automatically according to Section 3.

Consistent with the schematic Figure 1 in the introduction,
the original kernel k has a critical batch size m⇤(k) of size
4 and 6 respectively, which is too small to fully utilize the
parallel computing capacity of the GPU device. In contrast,
our adaptive kernel kG has a much larger critical batch size
m⇤(kG) ⇡ 6500, which leads to maximum GPU utiliza-
tion. We see that EigenPro 2.0 significantly outperforms
original EigenPro due to better resource utilization and pa-
rameter selection, as well as lower overhead (see Table 1).

Kernel machines that adapt to GPUs for effective large batch training

Table 2: Comparison of EigenPro 2.0 and state-of-the-art kernel methods

Dataset Size
EigenPro 2.0

(use 1 GTX Titan Xp) Results of Other Methods

error GPU time resource time error reference

MNIST 6.7⇥ 106 0.72% 19 m

4.8 h on
1 GTX Titan X 0.70% EigenPro (Ma & Belkin, 2017)

1.1 h on
1344 AWS vCPUs 0.72% PCG (Avron et al., 2016)

less than 37.5 hours
on 1 Tesla K20m 0.85% (Lu et al., 2014)

ImageNet† 1.3⇥ 106 20.6% 40 m - 19.9% Inception-ResNet-v2 (Szegedy et al., 2017)
4 h on

1 Tesla K40c 20.7% FALKON (Rudi et al., 2017)

TIMIT‡ 1.1 · 106
/ 2 · 106

31.7%

32.1%

24 m
(3 epochs)

8 m
(1 epoch)

3.2 h on
1 GTX Titan X 31.7% EigenPro (Ma & Belkin, 2017)

1.5 h on
1 Tesla K40c 32.3% FALKON (Rudi et al., 2017)

512 IBM
Blue Gene/Q cores 33.5% Ensemble (Huang et al., 2014)

7.5 h on
1024 AWS vCPUs 33.5% BCD (Tu et al., 2016)

multiple AWS
g2.2xlarge instances 32.4% DNN (May et al., 2017)

multiple AWS
g2.2xlarge instances 30.9% SparseKernel (May et al., 2017)

(use learned features)

SUSY 4 · 106 19.7% 58 s

6 m on
1 GTX Titan X 19.8% EigenPro (Ma & Belkin, 2017)

4 m on
1 Tesla K40c 19.6% FALKON (Rudi et al., 2017)

36 m on
IBM POWER8 ⇡ 20% Hierarchical (Chen et al., 2016)

† Our method uses the convolutional features from Inception-ResNet-v2 and Falkon uses the convolutional features from Inception-v4.
Both neural network models are presented in (Szegedy et al., 2017) and show nearly identical performance.
‡ There are two sampling rates for TIMIT, which result in two training sets of different sizes.

(a) MNIST (105 subsamples), stop when train mse < 1 · 10�4 (b) TIMIT (105 subsamples), stop when train mse < 2 · 10�4

Figure 2: Time to converge with different batch sizes and optimal step sizes

5.3 Batch size and GPU utilization

The number of operation required for one iteration of SGD
is linear in the batch size. Thus we expect that time re-

quired per iteration for a pure sequential machine would
scale linearly with batch size. On the other hand an ideal
parallel device with no overhead requires the same amount
of time to process any mini-batch. In Figure 3a, we show

Kernel machines that adapt to GPUs for effective large batch training

(a) Time per training iteration of different batch sizes on actual
and ideal devices (TIMIT, n = 105, d = 440)

(b) Time per training epoch on GPU with different sizes of train
set (n, which is also the model size) and batch that fit into the
GPU memory

Figure 3: Time per iteration / epoch for training with different batch sizes

how the training time per iteration for actual GPU depends
on the batch size. We see that for small batch sizes time
per iteration is nearly constant, like that of an ideal parallel
device, and start to increase for larger batches.

Note that in addition to time per iteration we need to con-
sider the overhead associated to each iteration. Larger
batch sizes incur less overhead per epoch. This phe-
nomenon is known in the systems literature as Amdahl’s
law (Rodgers, 1985). In Figure 3b we show GPU time per
epoch for different model (training set) size (n). We see
consistent speed-ups by increasing mini-batch size across
model sizes up to maximum GPU utilization.

5.4 “Interactive” training for exploratory machine
learning

Dataset Size Feature EigenPro
(GPU)

ThunderSVM
(GPU)

LibSVM
(CPU)

TIMIT 1 · 105 440 15 s 480 s 1.6 h
SVHN 7 · 104 1024 13 s 142 s 3.8 h
MNIST 6 · 104 784 6 s 31 s 9 m

CIFAR-10 5 · 104 1024 8 s 121 s 3.4 h

Table 3: Comparing training time of kernel machines

Most practical tasks of machine learning require multiple
training runs for parameter and feature selection, evaluating
appropriateness of data or features to a given task, and var-
ious other exploratory purposes. While using hours, days
or even months of machine time may be necessary to im-
prove on the state of the art in large-scale certain problems,
it is too time-consuming and expensive for most data anal-
ysis work. Thus, it is very desirable to train classifiers in

close to real time. One of the advantages of our approach is
the combination of its speed on small and medium datasets
using standard hardware together with the automatic opti-
mization parameter selection.

We demonstrate this on several smaller datasets (104 ⇠ 105

points) using a Titan Xp GPU (see Table 3). We see that in
every case training takes no more than 15 seconds, mak-
ing multiple runs for parameter and feature selection easily
feasible.

For comparison, we also provide timings for LibSVM,
a popular and widely used kernel library (Chang & Lin,
2011) and ThunderSVM (Wen et al., 2018), a fast GPU
implementation for LibSVM. We show the results for Lib-
SVM 4 and ThunderSVM using the same kernel with the
same parameter. We stopped iteration of our method when
the accuracy on test exceeded that of LibSVM, which our
method was able to achieve on every dataset. While not
intended as a comprehensive evaluation, the benefits of our
method for typical data analysis tasks are evident.5 Fast
training along with the “worry-free” optimization create
an “interactive/responsive” environment for using kernel
methods in machine learning. Furthermore, the choice of
kernel (e.g., Laplacian or Gaussian) and its single band-
width parameter is usually far simpler than the multiple pa-
rameters involved in the selection of architecture in neural
networks.

4We use the svm package in scikit-learn 0.19.0.
5Our algorithm is still much faster than LibSVM when run-

ning on CPU. For example, training on datasets shown in Table 3
takes between one and three minutes.

Kernel machines that adapt to GPUs for effective large batch training

5.5 Practical Techniques for Accelerating Inference

We would like to point out two simple and practical tech-
niques to accelerate and simplify kernel training. The use
of the Laplacian kernel is not common in the literature and
in our opinion deserves more attention. While PCA is fre-
quently used to speed up training (and sometimes to im-
prove the test results), it is useful to state the technique ex-
plicitly.

Choice of kernel function. In many cases Laplace (expo-
nential) kernel k(xxx,zzz) = e�

kxxx�zzzk
� produces results compa-

rable or better than those for the more standard Gaussian
kernel. Moreover the Laplacian kernel has several practi-
cal advantages over the Gaussian (consistent with the find-
ings reported in (Belkin et al., 2018)). (1) Laplacian gen-
erally requires fewer epochs for training to obtain the same
quality result. (2) The batch value m⇤ is typically larger
for the Laplacian kernel allowing for more effective paral-
lelization. (3) Test performance for the Laplacian kernel is
empirically more robust to the bandwidth parameter �, sig-
nificantly reducing the need for careful parameter tuning to
achieve optimal performance.

Dimensionality reduction by PCA. Recall that the pri-
mary cost of one EigenPro iteration is n ·md for the num-
ber of operations and n · (m + d) for memory where d is
the number of features. Thus reducing the dimension of
the features results in significant computational savings. It
is often possible to significantly reduce dimensionality of
the data without perceptibly changing classification (or re-
gression) accuracy by applying the Principal Components
Analysis (PCA). For example, using PCA to reduce the
feature dimensionality from 1536 to 500 for ImageNet de-
creases the accuracy by less than 0.2%.

6 CONCLUSION AND FUTURE
DIRECTIONS

Best practices for training modern large-scale models are
concerned with linear scaling. Most of the work is based
on an implicit but widely held assumption that the limit
of linear scaling, m⇤, cannot be controlled or changed in
practice. In contrast, this paper shows that the limit of lin-
ear scaling can be analytically and automatically adapted
to a given computing resource. This finding adds a new di-
mension for potential improvements in training large-scale
models.

The main technical contribution of this paper is a new
learning framework (EigenPro 2.0) that extends linear scal-
ing to match the parallel capacity of a computational re-
source. The framework is based on extracting limited
second order information to modify the optimization pro-
cedure without changing the learned predictor function.

While our paper deals with kernel machines, similar ideas
are applicable to a much broader class of learning architec-
tures including deep neural networks.

The algorithms developed in this paper allow for very fast
kernel learning on smaller datasets and easy scaling to sev-
eral million data points using a modern GPU. It is likely
that more effective memory management together with bet-
ter hardware would allow scaling up to 107 data points with
reasonable training time. Going beyond that to 108 or more
data points using multi-GPU setups is the next natural step
for kernel methods.

ACKNOWLEDGEMENTS

We thank Raef Bassily for discussions and helpful com-
ments and Alex Lee for running ThunderSVM compar-
isons. We thank Lorenzo Rosasco and Luigi Carratino for
sharing preprocessed ImageNet features. We used a Titan
Xp GPU provided by Nvidia. We acknowledge financial
support from NSF.

REFERENCES

Aronszajn, N. Theory of reproducing kernels. Transactions
of the American mathematical society, 68(3):337–404,
1950.

Avron, H., Clarkson, K., and Woodruff, D. Faster ker-
nel ridge regression using sketching and precondition-
ing. arXiv preprint arXiv:1611.03220, 2016.

Belkin, M., Ma, S., and Mandal, S. To understand deep
learning we need to understand kernel learning. arXiv
preprint arXiv:1802.01396, 2018.

Chang, C.-C. and Lin, C.-J. Libsvm: a library for support
vector machines. ACM transactions on intelligent sys-
tems and technology (TIST), 2(3):27, 2011.

Chen, J., Avron, H., and Sindhwani, V. Hierarchically com-
positional kernels for scalable nonparametric learning.
arXiv preprint arXiv:1608.00860, 2016.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and
Fei-Fei, L. Imagenet: A large-scale hierarchical image
database. In Computer Vision and Pattern Recognition,
2009. CVPR 2009. IEEE Conference on, pp. 248–255.
IEEE, 2009.

Garofolo, J. S., Lamel, L. F., Fisher, W. M., Fiscus, J. G.,
and Pallett, D. S. Darpa timit acoustic-phonetic conti-
nous speech corpus cd-rom. NIST speech disc, 1-1.1,
1993.

Golmant, N., Vemuri, N., Yao, Z., Feinberg, V., Gho-
lami, A., Rothauge, K., Mahoney, M. W., and Gonza-
lez, J. On the computational inefficiency of large batch
sizes for stochastic gradient descent. arXiv preprint
arXiv:1811.12941, 2018.

Kernel machines that adapt to GPUs for effective large batch training

Goyal, P., Dollár, P., Girshick, R., Noordhuis, P.,
Wesolowski, L., Kyrola, A., Tulloch, A., Jia, Y., and He,
K. Accurate, large minibatch sgd: Training imagenet in
1 hour. arXiv preprint arXiv:1706.02677, 2017.

Huang, P.-S., Avron, H., Sainath, T. N., Sindhwani, V., and
Ramabhadran, B. Kernel methods match deep neural
networks on timit. In ICASSP, pp. 205–209. IEEE, 2014.

Jia, X., Song, S., He, W., Wang, Y., Rong, H., Zhou, F.,
Xie, L., Guo, Z., Yang, Y., Yu, L., et al. Highly scal-
able deep learning training system with mixed-precision:
Training imagenet in four minutes. arXiv preprint
arXiv:1807.11205, 2018.

Krizhevsky, A. One weird trick for parallelizing convolu-
tional neural networks. arXiv preprint arXiv:1404.5997,
2014.

Krizhevsky, A. and Hinton, G. Learning multiple layers of
features from tiny images. Master’s thesis, University of
Toronto, 2009.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-
based learning applied to document recognition. In Pro-
ceedings of the IEEE, pp. 2278–2324, 1998.

Leventhal, D. and Lewis, A. S. Randomized methods for
linear constraints: convergence rates and conditioning.
Mathematics of Operations Research, 35(3):641–654,
2010.

Lu, Z., May, A., Liu, K., Garakani, A. B., Guo, D., Bellet,
A., Fan, L., Collins, M., Kingsbury, B., Picheny, M., and
Sha, F. How to scale up kernel methods to be as good as
deep neural nets. arXiv preprint arXiv:1411.4000, 2014.

Ma, S. and Belkin, M. Diving into the shallows: a compu-
tational perspective on large-scale shallow learning. In
Advances in Neural Information Processing Systems, pp.
3781–3790, 2017.

Ma, S., Bassily, R., and Belkin, M. The power of
interpolation: Understanding the effectiveness of sgd
in modern over-parametrized learning. arXiv preprint
arXiv:1712.06559, 2017.

May, A., Garakani, A. B., Lu, Z., Guo, D., Liu, K., Bellet,
A., Fan, L., Collins, M., Hsu, D., Kingsbury, B., et al.
Kernel approximation methods for speech recognition.
arXiv preprint arXiv:1701.03577, 2017.

McCandlish, S., Kaplan, J., Amodei, D., and Team, O. D.
An empirical model of large-batch training. arXiv
preprint arXiv:1812.06162, 2018.

Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., and
Ng, A. Reading digits in natural images with unsuper-
vised feature learning. In NIPS workshop, volume 2011,
pp. 4, 2011.

Rodgers, D. P. Improvements in multiprocessor system de-
sign. In SIGARCH, 1985.

Rudi, A., Carratino, L., and Rosasco, L. Falkon: An op-

timal large scale kernel method. In Advances in Neural
Information Processing Systems, pp. 3891–3901, 2017.

Smith, S. L., Kindermans, P.-J., and Le, Q. V. Don’t decay
the learning rate, increase the batch size. arXiv preprint
arXiv:1711.00489, 2017.

Szegedy, C., Ioffe, S., Vanhoucke, V., and Alemi, A. A.
Inception-v4, inception-resnet and the impact of residual
connections on learning. In AAAI, volume 4, pp. 12,
2017.

Takác, M., Bijral, A. S., Richtárik, P., and Srebro, N. Mini-
batch primal and dual methods for SVMs. In ICML (3),
pp. 1022–1030, 2013.

Tu, S., Roelofs, R., Venkataraman, S., and Recht, B. Large
scale kernel learning using block coordinate descent.
arXiv preprint arXiv:1602.05310, 2016.

Wen, Z., Shi, J., Li, Q., He, B., and Chen, J. Thunder-
svm: a fast svm library on gpus and cpus. The Journal
of Machine Learning Research (JMLR), 19(1):797–801,
2018.

Yao, Y., Rosasco, L., and Caponnetto, A. On early stop-
ping in gradient descent learning. Constructive Approx-
imation, 26(2):289–315, 2007.

You, Y., Gitman, I., and Ginsburg, B. Large batch
training of convolutional networks. arXiv preprint
arXiv:1708.03888, 2017.

Zhang, C., Bengio, S., Hardt, M., Recht, B., and Vinyals,
O. Understanding deep learning requires rethinking gen-
eralization. arXiv preprint arXiv:1611.03530, 2016.

Kernel machines that adapt to GPUs for effective large batch training

Appendices
A DATASETS

We reduce multiclass labels to multiple binary labels. For
image datasets including MNIST (LeCun et al., 1998),
CIFAR-10 (Krizhevsky & Hinton, 2009), and SVHN (Net-
zer et al., 2011), color images are first transformed to
grayscale images. We then rescale the range of each fea-
ture to [0, 1]. For ImageNet (Deng et al., 2009), we use
the top 800 PCA components of some convolutional fea-
tures extracted from Inception-ResNet-v2 (Szegedy et al.,
2017). For TIMIT (Garofolo et al., 1993), we normalize
each feature by z-score.

B SELECTION OF KERNEL AND ITS
BANDWIDTH

We use Gaussian kernel k(x, y) = exp(�kx�yk2

2�2) and
Laplace kernel k(x, y) = exp(�kx�yk

�) in our experi-
ments. Note that the kernel bandwidth � is selected through
cross-validation on a small subsampled dataset. In Table 4,
we report the kernel and its bandwidth selected for each
dataset to achieve the best performance. We also report
the parameters that are calculated automatically using our
method. Note that in practice we choose a value q (in the
parenthesis) that is larger than the q corresponding to mG .
Increasing q appears to lead to faster convergence. We use
a simple heuristic to automatically obtain such q based on
the eigenvalue and the size of the fixed coordinate block6.

C ANALYSIS OF ACCELERATION

Claim (Acceleration). Using the adaptive kernel kG
decreases the resource time required for training over the
original kernel k by a factor of a ⇡ �(K)

�(KG)
· mmax

G
m⇤(k) .

We will now give a derivation of this acceleration factor a,
based on the analysis of SGD in the interpolating setting
in (Ma et al., 2017).

As before, let (xxx1, y1), . . . , (xxxn, yn) be the data, and
let K be the corresponding (normalized) kernel matrix
Kij = k(xxxi,xxxj)/n. We start by recalling the SGD it-
eration in the kernel setting for a mini-batch of size m,
(xxxt1 , yt1), . . . , (xxxtm , ytm),

f f � ⌘ · 2

m

(
mX

i=1

(f(xxxti)� yti)k(xxxti , ·)
)

6For SUSY we directly specify a large q for optimal perfor-
mance.

When step size ⌘ is chosen optimally, we can apply The-
orem 4 in (Ma et al., 2017) to bound its convergence per
iteration toward the optimal (interpolating) solution f⇤ as
follows:

E
h
kft � f⇤k2

K

i
 g⇤K(m) · E

h
kft�1 � f⇤k2

K

i

Here g⇤K(m) is a kernel-dependent upper bound on the con-
vergence rate.

The fastest (up to a small constant factor) convergence
rate per iteration is obtained when using mini-batch size
m⇤(K) = �(K)

�1(K)��n(K) (or larger). Kernels used in prac-
tice, such as Gaussian kernels, have rapid eigendecay (Ma
& Belkin, 2017), i.e., �1(K) � �n(K). Hence we have
m⇤(k) ⇡ �(K)

�1(K) .

Thus we can write an accurate approximation of conver-
gence rate g⇤K(m⇤(K)) as follows:

✏⇤K , g⇤K(m⇤(K)) = 1� m⇤(K) · �n(K)

�(K) + (m� 1)�n(K)

⇡ 1�
�n(K)
�1(K)

1 + (m� 1)�n(K)
�(K)

We now observe that � = maxi=1,...,n k(xxxi,xxxi) � tr(K).
Hence for the mini-batch size m much smaller than n we
have

(m� 1)
�n(K)

�(K)
 (m� 1)

�n(K)

tr(K)
 m� 1

n
⌧ 1

That allows us to write

✏⇤K ⇡ 1� �n(K)

�1(K)

We will now apply this formula to the adaptive kernel kG .
Recall that its corresponding kernel matrix KG modifies the
top-q eigenspectrum of K such that

�i(KG) =

(
�q(K) if i q

�i(K) if i > q

Thus the convergence rate for kG is

✏⇤KG
⇡ 1�

�n(KG)

�1(KG)
= 1� �n(K)

�q(K)

Next, we compare the number of iterations needed to con-
verge to error ✏ using the original kernel k and the adaptive
kernel kG .

First, we see that for kernel k it takes t = log ✏
log ✏⇤K

iterations
to go below error ✏ such that

E
h
kft � f⇤k2

K

i
 ✏ · E

h
kf0 � f⇤k2

K

i

Kernel machines that adapt to GPUs for effective large batch training

Table 4: Selected kernel bandwidth and corresponding optimization parameters

Dataset Size of (Subsampled)
Train Set Kernel Bandwidth Train epochs Calculated Parameters

q (adjusted q) m = mG ⌘
MNIST 1 · 106 Gaussian 5 4 93 (330) 735 379
TIMIT 1.1 · 106 Laplacian 15 3 52 (128) 682 343

ImageNet 1.3 · 106 Gaussian 16 1 2 (321) 294 149
SUSY 6 · 105 Gaussian 4 1 106 (850) 1687 849

Notice that �n(K) tr(K)
n = 1

n for normalized kernel
matrix K. Thus for large n, we have

log ✏

log ✏⇤K
=

log ✏

log (1� �n(K)
�1(K))

⇡ log ✏ · �1(K)

�n(K)

In other words, the number of iterations needed to converge
with kernel k is proportional to �1(K)

�n(K) .

By the same token, to achieve accuracy ✏, the adaptive ker-
nel kG needs log ✏

log ✏⇤KG
⇡ log ✏ · �q(K)

�n(K) iteration.

Therefore, to achieve accuracy ✏, training with the adaptive
kernel kG needs �q(K)

�1(K) as many iterations as training with
the original kernel k.

To unpack the meaning of the ratio �q(K)
�1(K) , we rewrite it as

�q(K)

�1(K)
=

�1(KG)

�1(K)
=

�(KG)

�(K)
· m

⇤(K)

m⇤(KG)
=

�(KG)

�(K)
·m

⇤(K)

mmax
G

Recall that by the assumptions made in the paper (1) any
iteration for kernel K with mini-batch size m mmax

G re-
quires the same amount of resource time to complete on G ,
(2) iteration of kernels K and KG require the same resource
time for any m (negligible overhead).

Since m⇤(K) m⇤(KG) ⇡ mmax
G , we see that one iter-

ation of batch size m⇤(K) and one iteration of batch size
m⇤(KG) take the same amount of time for either kernel.

We thus conclude that the adaptive kernel accelerates over
the original kernel by a factor of approximately

�(K)

�(KG)
·
mmax

G

m⇤(K)

Remark. Notice that our analysis is based on using upper
bounds for convergence. While these bounds are tight ((Ma
et al., 2017), Theorem 3), there is no guarantees of tight-
ness for specific data and choice of kernel used in practice.
Remarkably, the values of parameters obtained by using
these bounds work very well in practice. Moreover, accel-
eration predicted theoretically closely matches acceleration
observed in practice.

D. Artifact Appendix
D.1 Abstract
This artifact contains the tensorflow implementation of
EigenPro 2.0 (from github.com/EigenPro/EigenPro2) and
a python script for running examples using public datasets.
It can validate the functionality of our method and support
the result in Table 2 of our SysML’2019 paper: Learning
kernels that adapt to GPUs.

D.2 Artifact check-list (meta-information)
• Algorithm: EigenPro iteration.
• Program: Python code.
• Data set: Public available image datasets.
• Run-time environment: Ubuntu 16.04 with CUDA (� 8.0)

and GPU Computing SDK installed.
• Hardware: Any GPU with compute capacity � 3.0 (tested

GPU: Nvidia Titan Xp (Pascal)).
• Publicly available?: Yes.
• Code licenses (if publicly available)?: MIT License.
• Archived (provide DOI)?: doi.org/10.5281/zenodo.2574996

D.3 Description
D.3.1 How delivered
EigenPro 2.0 is an open source library under MIT license
and is hosted with code, API specifications, usage instruc-
tions, and design documentations on Github.

D.3.2 Hardware dependencies
EigenPro 2.0 requires NVIDIA GPU with compute capacity
� 3.0.

D.3.3 Software dependencies
EigenPro 2.0 requires CUDA (� 8.0), Tensorflow (� 1.2.1),
and Keras (tested version: 2.0.8). EigenPro 2.0 has been
tested on Ubuntu 16.04 and Windows 10.

D.3.4 Data sets
All datasets are publicly available. The used dataset MNIST
in this artifact will be automatically downloaded and prepro-
cessed by the included python script. Users can also down-
load the dataset directly from yann.lecun.com/exdb/mnist.

D.4 Installation
The python based EigenPro 2.0 can be used directly out of
the package.

D.5 Experiment workflow
Below are the steps to download and run the experiments.
• Download the code from Github.

$ git clone \
> https://github.com/EigenPro/EigenPro2.git
$ cd EigenPro2

• Run the test code. Note that the value of mem gb needs
to be the size of the available GPU memory.

$ python run_mnist.py --kernel=Gaussian \
> --s=5 --mem_gb=12 --epochs 1 2 3 4 5

D.6 Evaluation and expected result
The expected results include automatically calculated hyper-
parameters for optimization and runtime, as well as classi-
fication error (in %) and mean squared error (l2) for both
training set and test set (val in the result).

https://github.com/EigenPro/EigenPro2
http://yann.lecun.com/exdb/mnist

