
BANDANA: USING NON-VOLATILE MEMORY FOR STORING DEEP
LEARNING MODELS

Assaf Eisenman 1 2 Maxim Naumov 2 Darryl Gardner 2 Misha Smelyanskiy 2 Sergey Pupyrev 2

Kim Hazelwood 2 Asaf Cidon 1 Sachin Katti 1

ABSTRACT
Typical large-scale recommender systems use deep learning models that are stored on a large amount of DRAM.
These models often rely on embeddings, which consume most of the required memory. We present Bandana, a
storage system that reduces the DRAM footprint of embeddings, by using Non-volatile Memory (NVM) as the
primary storage medium, with a small amount of DRAM as cache. The main challenge in storing embeddings
on NVM is its limited read bandwidth compared to DRAM. Bandana uses two primary techniques to address
this limitation: first, it stores embedding vectors that are likely to be read together in the same physical location,
using hypergraph partitioning, and second, it decides the number of embedding vectors to cache in DRAM by
simulating dozens of small caches. These techniques allow Bandana to increase the effective read bandwidth of
NVM by 2-3× and thereby significantly reduce the total cost of ownership.

1 INTRODUCTION

An increasing number of web-scale applications are rely-
ing on deep learning models, including online search (Clark,
2015), online ads (Zhou et al., 2018), and content recommenda-
tion systems (Covington et al., 2016). Typically, the precision
of deep learning algorithms increases as a function of the
model size and number of features. Therefore, application
providers dedicate ever more compute and storage resources
to training, storing and accessing deep learning models.

For example, at Facebook, thousands of servers are dedi-
cated to storing deep learning models to recommend relevant
posts or content to users. The deep learning features are
often represented by vectors called embeddings, which en-
code the meaning of each feature, such that similar vectors
are closer in the embedding Euclidean space. To compute
the most relevant posts to serve each user, Facebook uses
two types of embeddings: user and post embeddings. Post
embeddings represent the features of the post (e.g., the main
words), while the user embeddings represent features unique
to each user, which depict their topics of interest and past
activity. At Facebook, both types of embeddings are fully
stored in DRAM, in order to enable real-time access for
computing the most relevant content for each user.

However, DRAM is a relatively expensive storage medium,

1Stanford University 2Facebook, Inc. Correspondence to: Assaf
Eisenman <assafe@cs.stanford.edu>.

Proceedings of the 2nd SysML Conference, Palo Alto, CA, USA,
2019. Copyright 2019 by the author(s).

and in fact has gotten even more expensive recently, due to
shortages in global supply (Wu, 2018; Bary, 2018). In this
work, our goal is to minimize the amount of DRAM used to
store embeddings, and therefore the total cost of ownership
(TCO). Since post embeddings need to go through more
ranking and processing, they have a much longer pipeline
than user embeddings. Therefore, user embeddings can be
read early in the process from a slower but cheaper storage
medium than DRAM.

Non-volatile Memory (NVM) offers an attractive storage
medium for user embeddings, since it costs about an or-
der of magnitude less per bit than DRAM, and its latency
and throughput can satisfy the requirements of computing
user embeddings. However, even though NVM provides
sufficient latency to meet the system’s requirements, its
bandwidth is significantly lower than DRAM. Exacerbating
the problem, NVM devices offer maximum bandwidth only
if the size of reads is 4 KB or more, while user embedding
vectors are only 64-128 B. Therefore, naı̈vely substituting
DRAM for NVM results in underutilized bandwidth, and
causes both its latency to increase and the application’s
throughput to drop significantly.

We present Bandana, an NVM-based storage system for
embeddings of recommender systems, which optimizes the
read bandwidth of NVM for accessing deep learning em-
beddings. Bandana uses two primary mechanisms to op-
timize bandwidth: storing embedding vectors that can be
prefetched together to DRAM, and deciding which vectors
to cache in DRAM to maximize NVM bandwidth.

Bandana: Using Non-volatile Memory for Storing Deep Learning Models

Prefetching embedding vectors. Our NVM device
benchmarks show that to optimize bandwidth, NVM needs
to be read at the granularity of a 4 KB block or more. There-
fore, Bandana stores multiple embedding vectors that are
likely to be accessed together in the same 4 KB NVM block,
and when one of the objects needs to be read, it has the
option of prefetching the entire block to DRAM. We evalu-
ate two techniques for partitioning the vectors into blocks:
Social Hash Partitioner (SHP) (Kabiljo et al., 2017), a super-
vised hypergraph partitioning algorithm that maximizes the
number of vectors in each block that were accessed in the
same query, and K-means (Lloyd, 1982; Arthur & Vassilvit-
skii, 2007), an unsupervised algorithm that is run recursively
in two stages. We found that SHP doubled the effective
bandwidth compared to K-means for some workloads.

Caching vectors in DRAM. Even after storing related
vectors together, some blocks contain vectors that will not
be read and can be discarded. Therefore, Bandana decides
which vectors to keep in DRAM, by using a Least Recently
Used (LRU) queue, and only inserting objects from pre-
fetched blocks to the queue that have been accessed t times
in the past. We find that the performance varies widely
across different embedding tables based on the value of t
and the cache size. Therefore, inspired by recent research
in key-value caches (Waldspurger et al., 2017), Bandana runs
dozens of “miniature caches” that simulate the hit rate curve
of different values of t for each embedding table, with a very
low overhead. Based on the simulation results, Bandana
picks the optimal threshold for each embedding table.

We demonstrate that Bandana significantly improved the
effective bandwidth of NVM, enabling it to be used as a
primary storage medium for embeddings. To summarize
our contributions:

1. To our knowledge, Bandana is the first system that
leverages NVM to store deep learning models. It is
also one of the first published systems to use NVM in
large-scale production workloads.

2. Using the past access patterns of embedding vectors,
Bandana applies hypergraph partitioning to determine
which vectors are likely to be accessed together in the
future.

3. Bandana applies recent techniques from key-value
caching to run lightweight simulations of dozens of
miniature caches to determine how aggressively to
cache prefetched vectors for different cache sizes.

2 BACKGROUND

In this section we provide background on two topics: deep
learning embedding vectors and how they are used at Face-
book for recommending posts, as well as NVM.

Figure 1. A deep learning recommendation model.

2.1 Embedding Vectors

The goal of Facebook’s post recommendation system is to
recommend relevant content to users. A straightforward
way to train a ranking system for this purpose, would be to
encode the post and user features and use them for predicting
the likelihood of a click. For example, we can represent
users based on the pages they liked. In this case, each page
would correspond to a unique ID, and IDs would be mapped
to an element index in a binary vector. For instance, if a
user liked pages with the IDs 2 and 4, out of a total number
of 5 pages, the user feature vector would be (0,0,1,0,1).

On the other hand, we could represent posts based on the
words used to describe them. In this scenario, each word
would correspond to a unique ID, and once again IDs would
be mapped to an element index in a binary vector. For
example, if the post’s text is “red car” out of word dictionary
“bicycle, motorcycle, car, blue, red, green”, the post feature
vector would be (0, 0, 1, 0, 1, 0).

Since the total number of words in different languages is
on the order of millions, while the number of pages is on
the order of billions, such binary vectors would be very
large and sparse (i.e., will contain mostly zeros). Moreover,
such a naı̈ve representation would not apply any contextual
information of one page to another. In other words, very
similar pages would still be encoded as separate IDs.

However, instead of representing each word or page by a
single binary digit, if we represent them by a short vector, we
could represent the similarity between words or pages. The
mapping of items into a vector space is called an embedding.
Embedding vectors are learned and created in such a way
that vectors of items with similar meaning (in terms of
semantics, engagement, etc.) will also be located closer
in terms of distance. The distance is often measured in
Euclidean space. Recommending posts is a specific use case
of recommender systems (Covington et al., 2016; Cheng et al.,
2016; Wang et al., 2017), in which the goal is to recommend
the most relevant content based on past user behavior.

At Facebook, embedding vectors are stored in dedicated
tables, where each column represents an embedding vector,
and its column ID corresponds to its ID. Facebook maintains

Bandana: Using Non-volatile Memory for Storing Deep Learning Models

 0
 10
 20
 30
 40
 50
 60
 70
 80

1 2 4 8

La
te
nc
y
(µ
s)

Queue Depth

P99
Mean

(a)

 0

 0.5

 1

 1.5

 2

 2.5

1 2 4 8

B
an
dw
id
th

(G
B
/s
)

Queue Depth

(b)

Figure 2. The latency and bandwidth for a 4KB random-read work-
load with variable queue depths.

two types of embeddings: user and post embeddings. Each
user embedding table typically represents some kind of user
feature, such as pages and videos. The post tables can
represent the actual content of the post, such as words and
figures. The recommendation model receives input IDs,
extracts the corresponding embeddings, and processes them
with deep neural networks (NNs), as shown on Figure 1.

The typical vector dimension in our models is between 32
to 64, where each element occupies 1-4 bytes. Embedding
tables can contain tens of millions of embedding vectors,
requiring on the order of GBs per table. Due to their latency
requirements, these tables are usually stored in DRAM.

The embedding vectors are computed during training, where
for each data sample (e.g. user and post pair) only the
vectors accessed by the corresponding IDs are modified.
Therefore, as the training proceeds through the dataset, most
(if not all) vectors are updated multiple times. The vectors
are then used without any adjustments or modifications
during inference. They may be retrained every few hours.

2.2 NVM

Non-volatile Memory (NVM), is a new memory technology
that provides much lower latency and higher throughput
than flash, but lower performance than DRAM, for a much
lower cost than DRAM. NVM can be used in two form
factors: the DIMM form factor, which is byte-addressable,
or alternatively as a block device. The DIMM form factor
is currently not supported by Intel processors (Mellor, 2018),
and is more expensive than using NVM as a block device.
Therefore, for our use case, we focus on the block device
form factor.

To understand how to use NVM, we explored its perfor-
mance characteristics. For this purpose, we ran a widely
used I/O workload generator, Fio 2.19 (fio), on an NVM
device. We ran the Fio workloads with 4 concurrent jobs us-
ing the Libaio I/O engine with different queue depths. The
queue depth represents the number of outstanding I/O re-
quests to the device, which is a proxy for how many threads
we run in parallel. We measured the latency and bandwidth
of an NVM device with a capacity of 375 GB.

Figure 2 presents the average latency, P99 latency, and band-
width for a read-only workload with random accesses of
4 KB. The results show that there is a trade-off between la-
tency and bandwidth: a higher queue depth provides higher
read bandwidth, at the expense of higher latency. Note
that even at a high queue depth, NVM’s read bandwidth
(2.3 GB/s) is still > 30× lower than DRAM (e.g., 75 GB/s).

Note that unlike DRAM, NVM’s endurance deteriorates as
a function of the number of writes over its lifetime. Typical
NVM devices can be re-written 30 times a day, or they will
start exhibiting errors. Fortunately, the rate of updating the
vectors at Facebook is often between 10-20 times a day,
which is below the rate that would affect the endurance of
the NVM devices.

3 WORKLOAD CHARACTERIZATION

This section presents a workload characterization of the
user embeddings at Facebook. We analyze a production
workload containing 1 billion embedding vector lookups,
representing traffic of over one hour for a single model.
Currently, the number of models per server and the size of
each model are bounded by the server DRAM capacity.

Each user embedding table is typically used to represent a
different class of user behavior. For example, a table might
represent pages, where each embedding vector represents a
different page. Hence, a request in Bandana usually incor-
porates multiple tables and contains multiple vector lookups
inside each table. Because multiple posts are ranked for
a single user, the post embeddings are read much more
frequently, and post lookups constitute about 95% of the
total embedding reads. On the other hand, user embeddings
contain more features, and consume about 75% of the total
DRAM capacity.

In the model we analyze, embedding vectors are 128 bytes
containing 64 elements of type fp16. Table 1 describes
the characteristics of some representative user embedding
tables in the model. Each embedding table is comprised
of 10-20 million vectors (between 1.2 GB to 2.4 GB). The
average number of vectors included in a single request varies
across the tables, with 17.68 vector lookups (on average)
in embedding table 8, and up to 92.8 vector lookups (on
average) in embedding table 2. The table also presents
the vector lookup distribution across the user embedding
tables. The largest part of vector lookups is consumed by
embedding table 2, which serves 25% of the user embedding
lookups. Compulsory misses describe how many of these
lookups were unique (i.e., how many lookups correspond
to vectors that were not read before in the trace). The lower
the percentage of compulsory misses, the more likely the
table can be effectively cached.

To gain more insight on the reuse of the user embedding

Bandana: Using Non-volatile Memory for Storing Deep Learning Models

(a) Table 1 (b) Table 2 (c) Table 6 (d) Table 7

Figure 3. Hit rate curves of the user embedding tables with the top number of lookups.

0 2 4 6 8 10 12
Number of accesses (x103)

100

101

102

103

104

105

106

N
u
m

b
e
r

o
f

v
e
ct

o
rs

(a) Table 1

0 10 20 30 40 50
Number of accesses (x103)

100

101

102

103

104

105

106

N
u
m

b
e
r

o
f

v
e
ct

o
rs

(b) Table 2

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Number of accesses (x103)

100

101

102

103

104

105

106

107

N
u
m

b
e
r

o
f

v
e
ct

o
rs

(c) Table 6

0 1 2 3 4 5 6
Number of accesses (x103)

100

101

102

103

104

105

106

N
u
m

b
e
r

o
f

v
e
ct

o
rs

(d) Table 7

Figure 4. Access histograms of the user embedding tables with the top number of lookups.

Table 1. Characterization of the user embedding tables.

TABLE VECTORS AVG REQUEST % OF TOTAL COMPULSORY
SIZE LOOKUPS MISSES

1 10M 34.83 9.44% 4.16%
2 10M 92.75 25.14% 2.19%
3 20M 26.67 7.23% 24.29%
4 20M 25.14 6.82% 19.46%
5 10M 30.22 8.19% 22.68%
6 10M 53.50 14.5% 26.94%
7 10M 54.35 14.73% 11.36%
8 20M 17.68 4.79% 60.83%

vectors, we calculate the stack distances (Mattson et al., 1970)
of each embedding table. To compute them, we assume each
table is cached in an infinite LRU queue, where the stack
distance of a vector is its rank in an LRU queue at the time
it is requested, counted from the top of the eviction queue.
For example, if the requested vector is at the second object
in the eviction queue when it is requested, its stack distance
is equal to 2. This allows us to compute the hit rate curve
as a function of the memory allocated to embedding table.
Figure 3 depicts the hit rate curves of the four embedding
tables with the top number of lookups, in a trace of one
billion requests. Figure 4 shows the access histogram of
these tables, where each bar depicts how many vectors (Y
axis) were read a certain number of times (X axis). The
histograms show that there is a very high variance in the
access patterns of the tables. For example, table 2 contains
vectors that are read 10,000s of times, while for table 7 there
are no vectors that are read more than 1,000 times.

4 DESIGN

This section presents the design choices and trade-offs when
designing an NVM-based storage system for embedding
tables.

4.1 Baseline

A simple approach for using NVM to store recommender
system embedding tables is to cache a single vector that is
read by the application in DRAM, and evict a single old
vector at a time. We refer to this policy throughout the paper
as the baseline policy.

Figure 5 presents the latency as a function of the throughput
of the NVM device for the baseline policy, as well as for
a synthetic workload that issues random 4 KB reads from
the NVM. The reason that latency under the baseline policy
as a function of throughput is much higher than that of the
case where we issue 4 KB reads, is due to the fact that NVM
reads in the block device form factor are in the granularity of
4 KB blocks, while the size of an embedding vector is only
128 B. Therefore, the baseline policy is not utilizing more
than 96% of the read bandwidth of the NVM device. We
use the term effective bandwidth to denote the percentage
of NVM read bandwidth that is read by the application.
In the case of the baseline policy, the effective bandwidth
is only 4% of the total bandwidth of the NVM, and the
rest is discarded. Therefore, under a high load, when the
effective bandwidth is so low, the latency of NVM spikes
(and throughput drops).

Instead of reading a single vector to DRAM when it is
accessed, an alternative approach would be to read all 32

Bandana: Using Non-volatile Memory for Storing Deep Learning Models

 0

 50

 100

 150

 200

 250

 300

 350

 0 500
 1000

 1500
 2000

 2500
 3000

 3500
 4000

 4500
 5000

M
ea
n
La
te
nc
y
(µ
s)

Application Request Throughput (MB/s)

Baseline
100% Effective BW

(a)

 0

 100

 200

 300

 400

 500

 600

 0 500
 1000

 1500
 2000

 2500
 3000

 3500
 4000

 4500
 5000

P
99

La
te
nc
y
(µ
s)

Application Request Throughput (MB/s)

Baseline
100% Effective BW

(b)

Figure 5. Mean and P99 latencies as a function of the throughput
of a 375 GB NVM device. The baseline policy represents the
scenario where the application issues a 128 B NVM read for each
embedding vector. The 100% effective bandwidth line represents
the performance of the NVM device with random 4 KB reads.

vectors stored in its physical 4 KB block. However, when we
use a limited cache size, the policy of caching all 32 vectors
that belong to a block, performs even worse than fetching
one vector at a time, and reduces the effective bandwidth
by more than 90% compared to the baseline policy. This is
due to the fact that the vectors stored in the same physical
block as the requested vector are not read before they are
evicted, since they have no relationship with the vector that
had just been read. Therefore, fetching them together with
the requested vector offers no benefit (in §4.3 we further
analyze the performance of caching the prefetched vectors
without ordering them).

In summary, the limited effective bandwidth is the main
bottleneck to adopting NVM as an alternative for DRAM
for storing embeddings. Therefore, the main objective of
Bandana is to maximize the effective bandwidth increase
over the baseline policy.

4.2 Storing Related Vectors Together

If vectors that are accessed at short intervals from each
other are also stored physically in the same blocks, Bandana
would be able to read fewer NVM blocks while fetching
the same amount of data. We explore two directions for
physically placing the embedding vectors.

Semantic partitioning assumes that two vectors that are
close in the Euclidean space may also share a semantic
similarity, and thus should be stored together. We use an
unsupervised K-means clustering algorithm to evaluate this
direction. Supervised partitioning uses the history of past
accesses to decide which vectors should be stored together.

In order to evaluate the benefits of physically storing related
embedding vectors compared to the baseline policy, we start
by experimenting with an unlimited cache (i.e. a DRAM
cache with no evictions), in which all blocks that are read
are cached. We calculate the effective bandwidth increase

 0%

20%

40%

60%

80%

100%

120%

140%

160%

180%

200%

1 2 4 8 16 32 64 128
256

512
1024

2048
4096

8192

E
ffe
ct
iv
e
B
an
dw
id
th

In
cr
ea
se

Number of Clusters

1
2
3
4
5
6
7
8

Figure 6. Effective bandwidth increase when ordering embedding
vectors according to their K-means clusters. The lines represent
different embedding tables.

by comparing the number of block reads from the NVM
using a production workload of 1 billion requests.

4.2.1 Semantic Partitioning with K-Means

Our first hypothesis for deciding where to place vectors is
that vectors that are close in the Euclidean space are also
accessed at close temporal intervals. The intuition is that if
vectors are close to each other, they might represent similar
types of content (e.g., similar pages), and would be accessed
at similar times.

We can formalize the problem by expressing the embedding
table E as a m× n matrix

E = [v1, ..., vn] (1)

Suppose that n embedding vectors are semantically mean-
ingful, in other words, two vectors vi and vj that are close
to each other in Euclidean distance ||vi − vj ||2 sense are
also more likely to be accessed at close temporal intervals.
Then, we would like to find a column reordering p, such
that

min
p

n∑
i=0

||vp(i) − vp(i+1)||2 (2)

We can approximate the solution to this problem by using
K-means to cluster the vectors based on Euclidean distance,
and sort them so that vectors in the same cluster are ordered
next to each other in memory.

Figure 6 shows the effective bandwidth increase for differ-
ent number of clusters. The results show that for certain
tables (e.g., tables 1 and 2), the effective bandwidth is in-
creased significantly, while for others it is not. Note that
for example, table 8, which does not experience a large ef-
fective bandwidth increase, suffers from a high compulsory
miss rate (see Table 1). Ideally, we would use K-means
with a large number of clusters. Figure 7(a) shows that the
runtime of K-means increases exponentially as a function of

Bandana: Using Non-volatile Memory for Storing Deep Learning Models

 0
 20
 40
 60
 80

 100
 120
 140
 160

1 2 4 8 16 32 64 128
256
512
1024
2048
4096
8192

R
un

T
im
e
(M
in
ut
es
)

Number of Clusters

(a)

 6
 8

 10
 12
 14
 16
 18

256
512

1024
2048

4096
8192

16384

32768

65536

R
un

T
im
e
(M
in
ut
es
)

Number of Sub-clusters

(b)

 0
 1
 2
 3
 4
 5
 6
 7

1 2 3 4 5 6 7 8

R
un

T
im
e
(M
in
ut
es
)

Embedding Table

(c)

Figure 7. (a) The runtime of the K-means algorithm on embedding table 4, using the Faiss library with 20 iterations and 24 threads. (b)
The runtime of two-stage K-means algorithm on embedding table 4, using the Faiss library with 20 iterations and 24 threads. (c) The
runtime of the SHP algorithm with 16 iterations and 24 threads per embedding table.

 0%

 20%

 40%

 60%

 80%

 100%

 120%

 140%

 160%

 180%

 200%

256
512

1024
2048

4096
8192

16384

32768

65536

E
ffe
ct
iv
e
B
an
dw
id
th

In
cr
ea
se

Number of Sub-clusters

1
2
3
4
5
6
7
8

Figure 8. Effective bandwidth increase when ordering the embed-
ding vectors using recursive K-means. The lines represent different
embedding tables.

the number of clusters. Therefore, K-means does not scale
to a large number of clusters (e.g., 625,000).

In order to reduce the runtime, we also experiment running
an approximation of K-means by running the algorithm
recursively. We first run K-means to cluster the embeddings
into 256 clusters, then recursively run it again on each of
the clusters, creating “sub-clusters”. Figure 8 depicts the
effective bandwidth increase for different number of sub-
clusters, and Figure 7(b) shows the corresponding runtime
as measured on table 4. The results show that using recursive
K-means does not reduce the effective bandwidth, and there
is no benefit increasing the number of clusters beyond 8,192.

4.2.2 Supervised Partitioning with SHP

In general, a small Euclidean distance of vectors in embed-
ding tables does not always guarantee they are going to be
accessed together in time. Another problem of relying on the
Euclidean distance, especially in the context of Facebook,
is that if vectors are frequently updated due to re-training
(e.g., every hour), their Euclidean distance can change, and
therefore K-Means would need to be re-run at every update.
Therefore, we also experiment with an approach that does

not rely on Euclidean distances, but rather on the past access
patterns of each vector. This approach would not require re-
computing the classifier each time the vectors get re-trained,
since the identity of the vectors remains the same, even if
their values get updated.

To do so, we are inspired by techniques introduced in the
context of partitioning hypergraphs for optimizing data
placement for databases (Devine et al., 2006; Kabiljo et al.,
2017). Suppose that we have a representative sequence of
accesses to the embedding table, which are represented as
sparse IDs. Let these accesses be organized into lookup
queries Qj , each corresponding to a particular user. Then,
we would like to find a column reordering p such that
columns accessed together by the same user are stored in
the same block.

We can find a solution to this problem by mapping it to a
hypergraph. Let H = (D, E) be a hypergraph with a set
of vertices D corresponding to a sequence of accesses and
a set of hyperedges E corresponding to lookup queries Qj .
Also, let p be a partition of the vertices D =

⋃
Di into

disjoint blocks Di for i = 1, ..., k. Then, notice that the
spatial locality of accesses can be expressed as minimizing
the average fanout:

min
p

1

n

n∑
j=1

(
k∑

i=1

intersect(Qj ,Di)

)
(3)

where fanout in parenthesis is the number of blocks that
need to be read to satisfy the query, with

intersect(Qj ,Di) =

{
1 if Qj

⋂
Di 6= ∅

0 otherwise
(4)

Notice that the average fanout measures the number of
blocks accessed by each query, rather than the general prox-
imity of accesses. Therefore, we temporally approximate
vectors that are accessed in the same query.

We start with two blocks and apply the SHP (Kabiljo et al.,
2017) algorithm on them recursively, until the SHP block

Bandana: Using Non-volatile Memory for Storing Deep Learning Models

 0%

100%

200%

300%

400%

500%

600%

1 2 3 4 5 6 7 8

E
ffe
ct
iv
e
B
an
dw
id
th

In
cr
ea
se

Embedding Table

200M
1B
5B

Figure 9. Effective bandwidth increase when ordering the embed-
ding vectors using SHP with an unlimited DRAM cache, as a
function of the number of requests used to train SHP.

size equals the NVM block size. We first run the algorithm
on a set of up to 5 billion requests, then measure the band-
width reduction on a separate trace of 1 billion requests.

Figure 9 depicts the effective bandwidth increase per ta-
ble, when running the SHP algorithm with different num-
ber of requests. Overall, SHP exceeds the bandwidth sav-
ings achieved with K-means for all tables. Utilizing larger
datasets for running the algorithm improves its accuracy
and the corresponding effective bandwidth (we did not see a
significant bandwidth improvement for using datasets larger
than 5 billion requests). Figure 7(c) shows the SHP runtime
per table, running with 16 iterations and 24 threads.

4.3 Caching the Embedding Tables

So far, we assumed that Bandana uses an infinite cache.
However, as we noted above, the amount of DRAM we
can dedicate to each table is limited. Therefore, Bandana
also needs to implement an eviction policy to decide which
vectors to cache in DRAM. We experiment with using an
eviction policy of Least Recently Used (LRU).

The first question when deciding which vectors to cache
in DRAM, is how to treat the vectors that are pre-fetched
when Bandana reads the whole block. Figure 10 depicts the
effective bandwidth increase when all of the vectors in a
block are cached and treated the same as the actual requested
vector for the original tables and for the partitioned tables.
As the figure shows, simply allocating all 32 vectors in a
block to the cache will trigger 32 evictions of potentially
more useful vectors that are ranked higher in the eviction
queue, reducing the cache hit rate and reducing the effective
bandwidth significantly.

4.3.1 Caching the Prefetched Vectors

Even though our ordering algorithms improve the spatial lo-
cality of blocks, some prefetched vectors are not accessed at
all. This led us to experiment with inserting them in different

-100%
-90%
-80%
-70%
-60%
-50%
-40%
-30%
-20%
-10%

 0%
10%

80000 120000 160000 200000E
ffe
ct
iv
e
B
an
dw
id
th

In
cr
ea
se

Cache Size (vectors)

Partitioned Tables
Original Tables

Figure 10. Effective bandwidth increase when ordering the embed-
ding vectors using SHP with a limited DRAM cache, with a policy
of treating prefetched vectors the same as vectors that are read by
the application. The figure also depicts the effective bandwidth of
the unsorted original tables.

positions in the eviction queue. Inserting prefetched vectors
at a lower position in the queue prevents them from trigger-
ing the eviction of hot vectors, but also may shorten their
lifetime in the cache and make them less likely to get ac-
cessed before they are evicted, thus decreasing the effective
bandwidth. Overall, we noticed that while improving the hit
rate and bandwidth (compared with inserting prefetches at
the top of the queue), this method did not significantly affect
the performance for lower cache sizes, and still provided
low (and sometimes negative) bandwidth benefits. The main
reason for this is that all prefetched vectors are still allo-
cated to the cache, without filtering the less useful vectors.
Figure 11(a) presents the bandwidth reduction in embed-
ding table 2 when inserting prefetched vectors to different
positions in the queue, over a baseline with no prefetches.
The X axis represents the prefetch insertion position relative
to the top of the eviction queue (e.g. 0.5 and 0 mean the
middle and top of the queue, respectively).

Instead of allocating prefetched vectors to a lower point in
the queue, we can use an admission control algorithm that
decides whether prefetched vectors enter the queue at all.
As a first step, we use a separate LRU list, which we term
a shadow cache, that stores only the index of the vectors,
without storing their content. We allocate only vectors that
were explicitly read, thus simulating another cache (that has
no prefetched vectors) without actually caching the value of
the embedding vectors. When a block is read from the NVM,
its vectors are prefetched only if they already appear in the
shadow cache (note that the vector read by the application
is always cached). Figure 11(b) demonstrates the effective
bandwidth increase as a function of the size of the shadow
cache with table 2. The shadow cache size is calculated
using a multiplier over the real cache size. For example, a
multiplier of 1.5 for a cache of 80,000 vectors means that
the shadow cache size is 120,000 vectors.

Bandana: Using Non-volatile Memory for Storing Deep Learning Models

As shown in Figure 11(b), the shadow cache produces a very
small effective bandwidth increase when used as an admis-
sion policy. The existence of a vector in the shadow cache
does not correlate with its usefulness as a prefetched vec-
tor. We try to combine both methods, by using the shadow
cache to decide where to allocate the prefetched vector in
the queue. If the prefetched vector hits in the shadow cache,
it is allocated to the top of the actual cache. Otherwise, it
is allocated to the separate insertion position. Figure 11(c)
shows the effective bandwidth increase in embedding table 2
when using this method, over a baseline with no prefetches.

4.3.2 Dealing with Rarely Accessed Vectors

We try to improve bandwidth savings further by leveraging
the insight that during SHP run, some vectors are rarely
accessed, as demonstrated in Figure 4. SHP has very limited
information about such vectors and on how to sort them.
However, since SHP performs balanced partitioning, all the
vectors are partitioned to equally-sized blocks, and blocks
may contain vectors that were rarely (or never) accessed
during the SHP run. In such cases SHP will simply assign
them to arbitrary locations in blocks that have free space.

Driven by this insight, Bandana collects statistics on the
number of times each vector was accessed during the SHP
run (i.e, how many queries contained each vector). When
reading a 4 KB block from NVM, vectors will be prefetched
only if they were accessed more than t times during the SHP
run. Figure 12 presents the effective bandwidth increase
with different threshold values t for table 2, compared to a
baseline of no prefetches. This policy significantly improves
effective bandwidth. The number of vector accesses during
an SHP run correlates with their utility as prefetched vectors,
since SHP has more confidence in assigning a useful loca-
tion for vectors that appeared in many queries. For smaller
cache sizes, the price of evictions is higher, hence Bandana
should utilize higher thresholds to filter out the more spec-
ulative prefetches. For larger cache sizes, Bandana should
use lower thresholds to more aggressively prefetch.

4.3.3 Configuring the Cache Parameters with Simulations

As Figure 12 shows, the optimal threshold varies across
different cache sizes. Picking an a-priori one-size-fits-all
threshold for all the tables would lead to a low effective
bandwidth. Ideally, Bandana should automatically pick the
right threshold for each table and cache size and automati-
cally tune it for each table and cache size.

To do so, we borrow an idea used in key-value caches, called
“miniature caches” (Waldspurger et al., 2017). The idea behind
miniature caches is to simulate the hit rate curve of multiple
different cache configurations, or in our case, simulate the
cache with different thresholds for prefetched vectors, and
pick the one that provides the highest hit rate. The main

problem with this approach is how to simulate multiple
caches in real-time without incurring a high performance
and memory overhead.

Miniature caches use the insight that hit rate curves can
be estimated efficiently without having to use the entire
access workload, but rather by randomly sampling requests
from the workload and computing the hit rate curve for the
sampled requests. For example, if the total cache is of size
S, and we sample the request stream at a rate of 1

N , the
miniature cache only needs to track S

N vectors. In addition,
the miniature cache does not have to store the value of the
objects, only their IDs.

In our case, we find that in order to accurately simulate a
cache, we can down-sample its requests by a factor of 1000.
Table 2 compares the ideal threshold when running embed-
ding table 2 with different cache sizes, to the thresholds
chosen by the miniature cache simulations with different
sampling rates. The results show that there is not a big differ-
ence in the effective bandwidth between the ideal thresholds
and the ones chosen by the simulations. It also shows that
for larger caches, Bandana can use a more relaxed threshold,
while for smaller caches with less DRAM, Bandana benefits
from using a more aggressive admission control policy for
prefetched vectors.

In fact, the hit rate curves produced by the miniature caches
not only provide the ideal threshold for prefetched vec-
tors, but also allow the datacenter operator to optimize the
amount of DRAM across the different tables to maximize
performance. There are various techniques for maximiz-
ing total hit rate across multiple hit rate curves, including
when the curves are convex (Cidon et al., 2015; 2017), and
even when they are not convex (Beckmann & Sanchez, 2015;
Cidon et al., 2016; Waldspurger et al., 2017). In our case, we
found that the hit rate curves of all the tables are convex
and do not change substantially across runs. Therefore, we
ran Bandana on a trace with 5 billion requests and statically
assigned the amount of DRAM to assign to each table with
the goal of optimizing the total hit rate (Cidon et al., 2015).

5 END-TO-END EVALUATION

In this section we analyze the end-to-end effective band-
width increase of Bandana under different scenarios: (1) as
a function of cache size, (2) as a function of the simulated
cache size, (3) as a function of SHP’s training data size, and
(4) as a function of the embedding vector size. In all the
experiments in this section, unless otherwise specified, we
ran Bandana using SHP trained on 5 billion requests, with
a total cache of 4 million vectors, simulated caches with a
size of 0.1% of the total cache, and a vector size of 128 B.

Figure 13 compares the total effective bandwidth increase
across 8 different tables as a function of cache size. The

Bandana: Using Non-volatile Memory for Storing Deep Learning Models

-40%
-30%
-20%
-10%

 0%
10%
20%
30%
40%

0 0.3 0.5 0.7 0.9E
ffe
ct
iv
e
B
an
dw
id
th

In
cr
ea
se

Prefetch Insertion Position

200
160
120
80

(a)

-4%
-3%
-2%
-1%
 0%
 1%
 2%
 3%
 4%
 5%

1 1.5 2E
ffe
ct
iv
e
B
an
dw
id
th

In
cr
ea
se

Shadow Queue Size Multiplier

80
120
160
200

(b)

-40%
-30%
-20%
-10%

 0%
10%
20%
30%
40%

0 0.3 0.5 0.7 0.9E
ffe
ct
iv
e
B
an
dw
id
th

In
cr
ea
se

Prefetch Insertion Position

200
160
120
80

(c)

Figure 11. (a) Effective bandwidth increase when inserting prefetches to a different position in the queue, compared with no prefetching.
(b) Effective bandwidth increase when filtering prefetches based on the shadow queue, compared with no prefetching. (c) Effective
bandwidth increase when combining both methods, compared with no prefetching. The lines in all figures represent different cache sizes
(vectors×103).

Table 2. Measuring the effectiveness of using miniature caches with different sampling rates with embedding table 2. On the left, the
results show the ideal admission control threshold for the full cache, for different cache sizes. The results to the right show the chosen
threshold when running miniature caches, using different sampling ratios. Even at 0.1% sampling, miniature caches provides a relatively
similar bandwidth gain compared to the ideal threshold.

SIZE FULL CACHE 10% SAMPLING 1% SAMPLING 0.1% SAMPLING

THRESHOLD BW GAIN THRESHOLD BW GAIN THRESHOLD BW GAIN THRESHOLD BW GAIN
80,000 20 27.6% 20 27.6% 15 21.4% 15 21.4%
120,000 10 43.0% 15 36.3% 10 43.0% 15 36.3%
160,000 5 80.3% 5 80.3% 5 80.3% 10 61.0%
200,000 5 129.9% 5 129.9% 5 129.9% 5 129.9%

 0%

20%

40%

60%

80%

100%

120%

140%

5 10 15 20E
ffe
ct
iv
e
B
an
dw
id
th

In
cr
ea
se

Access Threshold

200
160
120
80

Figure 12. Effective bandwidth increase when filtering prefetched
vectors based on the number of accesses during SHP run. The
lines represent different cache sizes (vectors×103).

graph shows that for certain tables, the effective bandwidth
significantly increases as a function of the cache size, up
to almost 5× for table 2. For some tables, however, the
effective bandwidth remains relatively stable and low. The
reason for this is that the access patterns of some tables
are simply more random, and harder to effectively partition
and cache. At the extreme, an application that accesses
embedding vectors completely randomly would not see any
effective bandwidth increase.

We also analyze the impact of the size of the miniature
caches in Figure 14. The figure shows that the effective
bandwidth is almost the same with an oracle policy that
selects the ideal prefetched vector threshold, compared to

 0%

50%

100%

150%

200%

250%

300%

350%

400%

1M 2M 3M 4M 5M

E
ffe
ct
iv
e
B
an
dw
id
th

In
cr
ea
se

Total Cache Size (vectors)

2
1
4
3
7
5
8
6

Figure 13. Effective bandwidth increase as a function of total cache
size. The lines represent different embedding tables.

a miniature cache simulation that is scaled down to a thou-
sandth of the size of the cache.

Figure 15 varies the number of training samples. It shows
that as we increase the training time, the effective bandwidth
increases. This is due to the fact that SHP’s effectiveness
in placing related vectors physically together improves as a
function of the amount of training data.

While our model currently uses a vector size of 128 bytes,
we also compare the effective bandwidth increase for differ-
ent vector sizes in figure 16, using a total cache of 4 million
vectors (i.e. the cache size changes proportionally with the
vector size). When vector sizes are smaller, each NVM
block accommodates more vectors, enabling Bandana to

Bandana: Using Non-volatile Memory for Storing Deep Learning Models

 0%

50%

100%

150%

200%

250%

300%

1 2 3 4 5 6 7 8

E
ffe
ct
iv
e
B
an
dw
id
th

In
cr
ea
se

Embedding Table

0.1% Sampling
1% Sampling
10% Sampling

Full Cache

Figure 14. Effective bandwidth increase as a function of the sam-
pling rate of the miniature caches, trained on 5 billion requests.
The full cache policy represents an oracle policy that selects the
ideal threshold for each table.

 0%

50%

100%

150%

200%

250%

300%

1 2 3 4 5 6 7 8

E
ffe
ct
iv
e
B
an
dw
id
th

In
cr
ea
se

Embedding Table

200M
1B
5B

Figure 15. Effective bandwidth increase as a function of the num-
ber of requests used to train SHP, evaluated against 1 billion re-
quests.

achieve higher effective bandwidth increase.

6 RELATED WORK

Bandana uses techniques inspired by prior research in using
NVM as a substitute for DRAM, partitioning and caching.

NVM has been proposed as a low cost substitute for DRAM
in other contexts, including databases and file systems.
MyNVM (Eisenman et al., 2018) is a SQL database based
on MyRocks, which uses block-level NVM as a second
level cache for flash, and a lower cost substitute for DRAM.
Similar to Bandana, one of the main challenges MyNVM
deals with is NVM’s limited bandwidth compared to DRAM.
However, unlike Bandana, MyNVM stores objects in rel-
atively large files (e.g., 4-6 KB). The novel challenge ad-
dressed by Bandana is how to physically place and cache
embeddings vectors, which are much smaller than NVM
blocks.

Other databases simulate NVM in its byte-addressable form,
such as: CDDS (Venkataraman et al., 2011), Echo (Bailey et al.,
2013), FPTree (Oukid et al., 2016), and HiKV (Xia et al., 2017).
There has also been several prior projects in using NVM in
its byte-addressable form for file systems, including: NOVA-

 0%

50%

100%

150%

200%

250%

300%

1 2 3 4 5 6 7 8

E
ffe
ct
iv
e
B
an
dw
id
th

In
cr
ea
se

Embedding Table

256
128
64

Figure 16. Effective bandwidth increase as a function of the em-
bedding vector size (bytes).

Fortis (Xu & Swanson, 2016), LAWN (Wang & Chattopadhyay,
2018), and ByVFS (Wang et al., 2018). All of these systems
use simulations to estimate how byte-addressable NVM will
perform. Unfortunately since byte-addressable NVM is not
commercially available, its real performance characteristics
are unknown.

Bandana’s mechanism for ordering vectors in physical
blocks uses SHP, a hypergraph partitioning algorithm origi-
nally proposed for database query optimization (Shalita et al.,
2016; Kabiljo et al., 2017). The reason we chose SHP is its
scalability and ease of implementation. Another hypergraph
partitioning algorithm used for database query partitioning
is SWORD (Kumar et al., 2014). Zoltan (Devine et al., 2006)
and Parkway (Trifunović & Knottenbelt, 2008) are other dis-
tributed hypergraph partitioning algorithms. However, both
algorithms do not scale well for partitioning large workloads
in our application (for more details see (Kabiljo et al., 2017)).

Bandana uses micro-simulations to test different cache ad-
mission thresholds. A similar approach was used in re-
cent work (Waldspurger et al., 2017) to approximate miss-rate
curves of different caching algorithms, and select the opti-
mal configuration in real-time. Talus (Beckmann & Sanchez,
2015) and Cliffhanger (Cidon et al., 2016) demonstrate how
miss-rate curves can be estimated by simulating a small
cache. Other recent low cost miss-rate curve approxima-
tion techniques include Counter Stacks (Wires et al., 2014),
SHARDS (Waldspurger et al., 2015), and AET (Hu et al., 2016).

7 CONCLUSIONS

Bandana is a novel NVM-based storage system for storing
deep learning models. It provides a lower cost alternative to
existing fully DRAM-based storage. Bandana reorders em-
bedding vectors and stores related ones physically together
for efficient prefetching, and dynamically adjusts its caching
policy by simulating miniature caches for each embedding
table. Similar techniques employed by Bandana can be
extended for using NVM to store other types of datasets,
which require granular access to data.

Bandana: Using Non-volatile Memory for Storing Deep Learning Models

REFERENCES

Flexible I/O tester. https://github.com/axboe/fio.

Arthur, D. and Vassilvitskii, S. K-means++: The advantages
of careful seeding. Proc. 18th Annual ACM-SIAM Sym-
posium on Discrete Algorithms, pp. 1027–1035, 2007.

Bailey, K. A., Hornyack, P., Ceze, L., Gribble, S. D., and
Levy, H. M. Exploring storage class memory with key
value stores. In Proceedings of the 1st Workshop on
Interactions of NVM/FLASH with Operating Systems
and Workloads, INFLOW ’13, pp. 4:1–4:8, New York,
NY, USA, 2013. ACM. ISBN 978-1-4503-2462-5. doi:
10.1145/2527792.2527799. URL http://doi.acm.
org/10.1145/2527792.2527799.

Bary, E. DRAM supply/demand tightness should
continue in second half of 2018, says Baird, 2018.
https://www.marketwatch.com/story/
dram-supplydemand-tightness-should-
continue-in-second-half-of-2018-says-
baird-2018-06-15.

Beckmann, N. and Sanchez, D. Talus: A simple way to
remove cliffs in cache performance. In 2015 IEEE 21st
International Symposium on High Performance Computer
Architecture (HPCA), pp. 64–75, Feb 2015. doi: 10.1109/
HPCA.2015.7056022.

Cheng, H.-T., Koc, L., Harmsen, J., Shaked, T., Chandra,
T., Aradhye, H., Anderson, G., Corrado, G., Chai, W.,
Ispir, M., Anil, R., Haque, Z., Hong, L., Jain, V., Liu, X.,
and Shah, H. Wide & deep learning for recommender
systems. In Proceedings of the 1st Workshop on Deep
Learning for Recommender Systems, DLRS 2016, pp. 7–
10, New York, NY, USA, 2016. ACM. ISBN 978-1-4503-
4795-2. doi: 10.1145/2988450.2988454. URL http:
//doi.acm.org/10.1145/2988450.2988454.

Cidon, A., Eisenman, A., Alizadeh, M., and Katti,
S. Dynacache: Dynamic cloud caching. In
7th USENIX Workshop on Hot Topics in Cloud
Computing (HotCloud 15), Santa Clara, CA,
July 2015. URL https://www.usenix.
org/conference/hotcloud15/workshop-
program/presentation/cidon.

Cidon, A., Eisenman, A., Alizadeh, M., and Katti, S.
Cliffhanger: Scaling performance cliffs in web memory
caches. In 13th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 16), pp.
379–392, Santa Clara, CA, March 2016. ISBN 978-
1-931971-29-4. URL https://www.usenix.
org/conference/nsdi16/technical-
sessions/presentation/cidon.

Cidon, A., Rushton, D., Rumble, S. M., and Stutsman,
R. Memshare: a dynamic multi-tenant key-value
cache. In 2017 USENIX Annual Technical Con-
ference (USENIX ATC 17), pp. 321–334, Santa
Clara, CA, 2017. USENIX Association. ISBN 978-
1-931971-38-6. URL https://www.usenix.
org/conference/atc17/technical-
sessions/presentation/cidon.

Clark, J. Google turning its lucrative web search over to
AI machines, 2015. https://www.bloomberg.
com/news/articles/2015-10-26/google-
turning-its-lucrative-web-search-
over-to-ai-machines.

Covington, P., Adams, J., and Sargin, E. Deep neural net-
works for YouTube recommendations. In Proceedings
of the 10th ACM Conference on Recommender Systems,
New York, NY, USA, 2016.

Devine, K. D., Boman, E. G., Heaphy, R. T., Bisseling,
R. H., and Catalyurek, U. V. Parallel hypergraph partition-
ing for scientific computing. In Proceedings of the 20th
International Conference on Parallel and Distributed
Processing, IPDPS’06, pp. 124–124, Washington, DC,
USA, 2006. IEEE Computer Society. ISBN 1-4244-0054-
6. URL http://dl.acm.org/citation.cfm?
id=1898953.1899056.

Eisenman, A., Gardner, D., AbdelRahman, I., Axboe, J.,
Dong, S., Hazelwood, K., Petersen, C., Cidon, A., and
Katti, S. Reducing DRAM footprint with NVM in Face-
book. In Proceedings of the Thirteenth EuroSys Con-
ference, EuroSys ’18, pp. 42:1–42:13, New York, NY,
USA, 2018. ACM. ISBN 978-1-4503-5584-1. doi:
10.1145/3190508.3190524. URL http://doi.acm.
org/10.1145/3190508.3190524.

Hu, X., Wang, X., Zhou, L., Luo, Y., Ding, C., and Wang,
Z. Kinetic modeling of data eviction in cache. In
2016 USENIX Annual Technical Conference (USENIX
ATC 16), pp. 351–364, Denver, CO, 2016. USENIX
Association. ISBN 978-1-931971-30-0. URL https:
//www.usenix.org/conference/atc16/
technical-sessions/presentation/hu.

Kabiljo, I., Karrer, B., Pundir, M., Pupyrev, S., and
Shalita, A. Social hash partitioner: A scalable dis-
tributed hypergraph partitioner. Proc. VLDB Endow.,
10(11):1418–1429, August 2017. ISSN 2150-8097.
doi: 10.14778/3137628.3137650. URL https://doi.
org/10.14778/3137628.3137650.

Kumar, K. A., Quamar, A., Deshpande, A., and Khuller, S.
SWORD: Workload-aware data placement and replica
selection for cloud data management systems. The VLDB

http://doi.acm.org/10.1145/2527792.2527799
http://doi.acm.org/10.1145/2527792.2527799
https://www.marketwatch.com/story/dram-supplydemand-tightness-should-continue-in-second-half-of-2018-says-baird-2018-06-15
https://www.marketwatch.com/story/dram-supplydemand-tightness-should-continue-in-second-half-of-2018-says-baird-2018-06-15
https://www.marketwatch.com/story/dram-supplydemand-tightness-should-continue-in-second-half-of-2018-says-baird-2018-06-15
https://www.marketwatch.com/story/dram-supplydemand-tightness-should-continue-in-second-half-of-2018-says-baird-2018-06-15
http://doi.acm.org/10.1145/2988450.2988454
http://doi.acm.org/10.1145/2988450.2988454
https://www.usenix.org/conference/hotcloud15/workshop-program/presentation/cidon
https://www.usenix.org/conference/hotcloud15/workshop-program/presentation/cidon
https://www.usenix.org/conference/hotcloud15/workshop-program/presentation/cidon
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/cidon
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/cidon
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/cidon
https://www.usenix.org/conference/atc17/technical-sessions/presentation/cidon
https://www.usenix.org/conference/atc17/technical-sessions/presentation/cidon
https://www.usenix.org/conference/atc17/technical-sessions/presentation/cidon
https://www.bloomberg.com/news/articles/2015-10-26/google-turning-its-lucrative-web-search-over-to-ai-machines
https://www.bloomberg.com/news/articles/2015-10-26/google-turning-its-lucrative-web-search-over-to-ai-machines
https://www.bloomberg.com/news/articles/2015-10-26/google-turning-its-lucrative-web-search-over-to-ai-machines
https://www.bloomberg.com/news/articles/2015-10-26/google-turning-its-lucrative-web-search-over-to-ai-machines
http://dl.acm.org/citation.cfm?id=1898953.1899056
http://dl.acm.org/citation.cfm?id=1898953.1899056
http://doi.acm.org/10.1145/3190508.3190524
http://doi.acm.org/10.1145/3190508.3190524
https://www.usenix.org/conference/atc16/technical-sessions/presentation/hu
https://www.usenix.org/conference/atc16/technical-sessions/presentation/hu
https://www.usenix.org/conference/atc16/technical-sessions/presentation/hu
https://doi.org/10.14778/3137628.3137650
https://doi.org/10.14778/3137628.3137650

Bandana: Using Non-volatile Memory for Storing Deep Learning Models

Journal, 23(6):845–870, December 2014. ISSN 1066-
8888. doi: 10.1007/s00778-014-0362-1. URL http://
dx.doi.org/10.1007/s00778-014-0362-1.

Lloyd, S. P. Least square quantization in pcm. IEEE Trans.
Information Theory, 28:129–137, 1982.

Mattson, R. L., Gecsei, J., Slutz, D. R., and Traiger, I. L.
Evaluation techniques for storage hierarchies. IBM Sys-
tems journal, 9(2):78–117, 1970.

Mellor, C. Intel hands first Optane DIMM to Google, where
it’ll collect dust until a supporting CPU arrives, 2018.
https://www.theregister.co.uk/2018/
08/10/optane_dimm_ceremonially_ships_
but_lacks_any_xeon_support/.

Oukid, I., Lasperas, J., Nica, A., Willhalm, T., and Lehner,
W. Fptree: A hybrid SCM-DRAM persistent and con-
current B-Tree for storage class memory. In Proceed-
ings of the 2016 International Conference on Manage-
ment of Data, SIGMOD ’16, pp. 371–386, New York,
NY, USA, 2016. ACM. ISBN 978-1-4503-3531-7. doi:
10.1145/2882903.2915251. URL http://doi.acm.
org/10.1145/2882903.2915251.

Shalita, A., Karrer, B., Kabiljo, I., Sharma, A., Presta, A.,
Adcock, A., Kllapi, H., and Stumm, M. Social hash:
An assignment framework for optimizing distributed
systems operations on social networks. In 13th USENIX
Symposium on Networked Systems Design and Implemen-
tation (NSDI 16), pp. 455–468, Santa Clara, CA, 2016.
USENIX Association. URL https://www.usenix.
org/conference/nsdi16/technical-
sessions/presentation/shalita.

Trifunović, A. and Knottenbelt, W. J. Parallel multilevel
algorithms for hypergraph partitioning. J. Parallel Distrib.
Comput., 68(5):563–581, May 2008. ISSN 0743-7315.
doi: 10.1016/j.jpdc.2007.11.002. URL http://dx.
doi.org/10.1016/j.jpdc.2007.11.002.

Venkataraman, S., Tolia, N., Ranganathan, P., and Camp-
bell, R. H. Consistent and durable data structures for
non-volatile byte-addressable memory. In Proceedings
of the 9th USENIX Conference on File and Stroage
Technologies, FAST’11, pp. 5–5, Berkeley, CA, USA,
2011. USENIX Association. ISBN 978-1-931971-82-
9. URL http://dl.acm.org/citation.cfm?
id=1960475.1960480.

Waldspurger, C., Saemundsson, T., Ahmad, I., and Park,
N. Cache modeling and optimization using miniature
simulations. In 2017 USENIX Annual Technical
Conference (USENIX ATC 17), pp. 487–498, Santa
Clara, CA, 2017. USENIX Association. ISBN 978-
1-931971-38-6. URL https://www.usenix.

org/conference/atc17/technical-
sessions/presentation/waldspurger.

Waldspurger, C. A., Park, N., Garthwaite, A., and Ah-
mad, I. Efficient MRC construction with SHARDS.
In 13th USENIX Conference on File and Stor-
age Technologies (FAST 15), pp. 95–110, Santa
Clara, CA, 2015. USENIX Association. ISBN 978-
1-931971-201. URL https://www.usenix.
org/conference/fast15/technical-
sessions/presentation/waldspurger.

Wang, C. and Chattopadhyay, S. LAWN: Boosting the
performance of NVMM file system through reducing
write amplification. In Proceedings of the 55th Annual
Design Automation Conference, DAC ’18, pp. 6:1–6:6,
New York, NY, USA, 2018. ACM. ISBN 978-1-4503-
5700-5. doi: 10.1145/3195970.3196066. URL http:
//doi.acm.org/10.1145/3195970.3196066.

Wang, R., Fu, B., Fu, G., and Wang, M. Deep & cross
network for ad click predictions. In Proceedings of
the ADKDD’17, ADKDD’17, pp. 12:1–12:7, New York,
NY, USA, 2017. ACM. ISBN 978-1-4503-5194-2. doi:
10.1145/3124749.3124754. URL http://doi.acm.
org/10.1145/3124749.3124754.

Wang, Y., Jiang, D., and Xiong, J. Caching or
not: Rethinking virtual file system for non-volatile
main memory. In 10th USENIX Workshop on
Hot Topics in Storage and File Systems (HotStor-
age 18), Boston, MA, 2018. USENIX Association.
URL https://www.usenix.org/conference/
hotstorage18/presentation/wang.

Wires, J., Ingram, S., Drudi, Z., Harvey, N. J. A., and
Warfield, A. Characterizing storage workloads with
counter stacks. In 11th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 14), pp. 335–
349, Broomfield, CO, 2014. USENIX Association. ISBN
978-1-931971-16-4. URL https://www.usenix.
org/conference/osdi14/technical-
sessions/presentation/wires.

Wu, A. DRAM supply to remain tight with its annual
bit growth for 2018 forecast at just 19.6%, according to
Trendforce, 2018. https://www.dramexchange.
com.

Xia, F., Jiang, D., Xiong, J., and Sun, N. HiKV: A hybrid
index key-value store for DRAM-NVM memory systems.
In 2017 USENIX Annual Technical Conference (USENIX
ATC 17), pp. 349–362, Santa Clara, CA, 2017. USENIX
Association. ISBN 978-1-931971-38-6. URL https:
//www.usenix.org/conference/atc17/
technical-sessions/presentation/xia.

http://dx.doi.org/10.1007/s00778-014-0362-1
http://dx.doi.org/10.1007/s00778-014-0362-1
https://www.theregister.co.uk/2018/08/10/optane_dimm_ceremonially_ships_but_lacks_any_xeon_support/
https://www.theregister.co.uk/2018/08/10/optane_dimm_ceremonially_ships_but_lacks_any_xeon_support/
https://www.theregister.co.uk/2018/08/10/optane_dimm_ceremonially_ships_but_lacks_any_xeon_support/
http://doi.acm.org/10.1145/2882903.2915251
http://doi.acm.org/10.1145/2882903.2915251
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/shalita
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/shalita
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/shalita
http://dx.doi.org/10.1016/j.jpdc.2007.11.002
http://dx.doi.org/10.1016/j.jpdc.2007.11.002
http://dl.acm.org/citation.cfm?id=1960475.1960480
http://dl.acm.org/citation.cfm?id=1960475.1960480
https://www.usenix.org/conference/atc17/technical-sessions/presentation/waldspurger
https://www.usenix.org/conference/atc17/technical-sessions/presentation/waldspurger
https://www.usenix.org/conference/atc17/technical-sessions/presentation/waldspurger
https://www.usenix.org/conference/fast15/technical-sessions/presentation/waldspurger
https://www.usenix.org/conference/fast15/technical-sessions/presentation/waldspurger
https://www.usenix.org/conference/fast15/technical-sessions/presentation/waldspurger
http://doi.acm.org/10.1145/3195970.3196066
http://doi.acm.org/10.1145/3195970.3196066
http://doi.acm.org/10.1145/3124749.3124754
http://doi.acm.org/10.1145/3124749.3124754
https://www.usenix.org/conference/hotstorage18/presentation/wang
https://www.usenix.org/conference/hotstorage18/presentation/wang
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/wires
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/wires
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/wires
https://www.dramexchange.com
https://www.dramexchange.com
https://www.usenix.org/conference/atc17/technical-sessions/presentation/xia
https://www.usenix.org/conference/atc17/technical-sessions/presentation/xia
https://www.usenix.org/conference/atc17/technical-sessions/presentation/xia

Bandana: Using Non-volatile Memory for Storing Deep Learning Models

Xu, J. and Swanson, S. NOVA: A log-structured file system
for hybrid volatile/non-volatile main memories. In 14th
USENIX Conference on File and Storage Technologies
(FAST 16), pp. 323–338, Santa Clara, CA, 2016. USENIX
Association. ISBN 978-1-931971-28-7. URL https:
//www.usenix.org/conference/fast16/
technical-sessions/presentation/xu.

Zhou, G., Zhu, X., Song, C., Fan, Y., Zhu, H., Ma, X., Yan,
Y., Jin, J., Li, H., and Gai, K. Deep interest network for
click-through rate prediction. In Proceedings of the 24th
ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, KDD ’18, pp. 1059–1068,
New York, NY, USA, 2018. ACM. ISBN 978-1-4503-
5552-0. doi: 10.1145/3219819.3219823.

https://www.usenix.org/conference/fast16/technical-sessions/presentation/xu
https://www.usenix.org/conference/fast16/technical-sessions/presentation/xu
https://www.usenix.org/conference/fast16/technical-sessions/presentation/xu

