
USING AUTOTVM TO AUTOMATICALLY GENERATE DEEP LEARNING
LIBRARIES FOR MOBILE DEVICES

Eddie Yan 1 Tianqi Chen 1 Lianmin Zheng 2 Ziheng Jiang 1 Thierry Moreau 1 Carlos Guestrin 1 Luis Ceze 1

Arvind Krishnamurthy 1

ABSTRACT
Providing automated performance portability remains an important challenge for deep learning systems. While
popular networks enjoy high performance on popular hardware targets such as server-class GPUs and TPUs, porting
even off-the-shelf models with reasonable performance to mobile and embedded systems remains challenging.
In this demo, we will demonstrate the AutoTVM system, which provides an automated end-to-end solution
for optimizing deep learning operator implementations from computational graph level model specification to
specialized operator libraries.

1 INTRODUCTION

Developers of deep learning models have enjoyed tremen-
dous advancements in productivity in recent years. Cutting
edge GPU and TPU hardware allow for ever-faster model
training and deployment, while operator and framework
support continues to improve for increasingly exotic model
architectures and operators. On the other hand, support on
edge devices, where deep learning deployment stands to
have the largest impact on communication bandwidth and
energy savings, remains limited. Our demo aims to show an
automated end-to-end solution for optimizing and deploying
deep learning models on edge hardware, specifically single-
board-computer and mobile phone form-factor devices. We
demonstrate automation from model ingestion (via stan-
dard frameworks such as MxNet (Chen et al., 2015) and
PyTorch (Paszke et al., 2017)) to operator implementation
tuning (for specific hardware devices such as mobile CPUs
and GPUs) to deployment (compilation of device-specific
libraries).

2 BACKGROUND

Traditional deep learning frameworks leverage vast libraries
of highly optimized deep learning operator kernels backed
by intensive engineering effort to provide performance
on commonly used hardware devices such as server and
desktop class GPUs. Support for mobile devices has also
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adopted this approach. In place of GPU libraries such as
cuDNN (Chetlur et al., 2014) and MIOpen (mio), mobile
devices rely on libraries such as NCNN (ncn), ARMCom-
puteLibrary (arm), and TensorFlow Lite (tfl). However, the
sheer diversity of mobile device SoCs (different CPU and
GPU configurations) in addition to the number of possible
model architectures used by application developers means
that library support is in a perpetual race against the clock
as new models emerge and older models fall out of fashion.
In fields such as computer vision, model turnover can be
especially rapid for mobile devices as improved features
(e.g., object detection vs. classification), improved accu-
racy (e.g., ResNet (He et al., 2016) vs. VGG (Simonyan
& Zisserman, 2014)), and power-savings (e.g., ResNet vs.
MobileNet (Howard et al., 2017) or quantized models) are
all highly valued.

Instead of relying on handcrafted libraries of deep learning
operators that require vast engineering resources to develop,
we will demonstrate an automated approach. Our demo
demonstrates the application of the AutoTVM (Chen et al.,
2018) system to an edge-device hardware target. AutoTVM
extracts operator requirements automatically from a neural
network computation graph, and then leverages a machine-
learning guided optimizer to tune operator implementations
for performance on real hardware. This process is made
possible by the TVM language, which allows us to pro-
grammatically define a rich search space of implementation
options analogous to what a human engineer can explore
manually. At the end of this process, AutoTVM produces
executable libraries customized to the specific hardware
platform and model architecture, without laborious manual
effort.
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Figure 1. Overview of the TVM RPC system used by AutoTVM.
AutoTVM optimization services request hardware resources from
a centralized tracker that allows a wide range of hardware devices
to be shared across optimization tasks. This system allows opti-
mization algorithms to use arbitrary hardware devices, regardless
of the algorithm’s compute platform.

3 SYSTEM OVERVIEW

Our demo will leverage the TVM RPC system, which allows
hardware devices to be shared across different optimization
tasks. Using this system, optimization algorithms request
hardware resource tokens from a centralized tracker, which
provide access to devices ranging from GPUs to single board
computers to remote cloud instances. This access allows op-
timization algorithms to profile device performance on real
hardware devices, independently of their own computation
platform. Figure 1 shows an example TVM RPC system
setup containing different hardware devices.

4 DEMO DETAILS

Our demo will show the example of a user porting a popular
computer vision model to a single board computer (e.g.,
Raspberry Pi 3B, RK3399, Ultra96 FPGA board) or compa-
rable mobile phone. Initially, after extracting the required
operators from the models computation graph, AutoTVM
will be able to achieve a fallback level of performance (with-
out optimization). As AutoTVM completes more iterations
of optimization and finds faster and faster implementations
of each operator, we will see the run time of the model im-
prove until it exceeds the speeds achieved by out-of-the-box
library solutions, such as Tensorflow Lite. We will use a
Python tutorial script to highlight the ease-of-deployment
of AutoTVM during this portion, and encourage audience
interruptions and questions regarding the use of our stack.
At this point of the demo, we can leverage distributed re-
mote infrastructure to speed up the optimization pipeline, as
it involves both performance measurement on real hardware
(which can be outsourced to a cluster of devices), and model

fitting and implementation proposal (which can also be done
remotely). If the venue does not have an internet connec-
tion that is suitable for using distributed infrastructure, we
can reliably fall back on local hardware without sacrificing
the required performance for demo purposes. Our demo
hardware (excluding remote devices if connected) will be a
single board computer and a laptop. As demo time is lim-
ited, we will also show the maximum performance achieved
by our system after hours of optimization time. Note that
both the processes of importing a model from a framework
and switching the optimization target from one device to
another are push-button, and AutoTVM is portable and
performance-competitive across a wide range of model ar-
chitectures. Additionally, whereas our demo focuses on the
case of mobile and edge devices, our stack is portable across
many hardware types (e.g., x86 CPU, NVIDIA GPU, AMD
GPU, embedded FPGA).
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