
NGRAPH/PLAIDML DEMO FOR SYSML 2019

Robert Earhart 1

ABSTRACT
We propose to demonstrate the nGraph/PlaidML compiler toolchain, by performing inference and training of a
simple style transfer network on commodity hardware. TensorFlow integration and custom operation definition
will be included.

1 TECHNOLOGY

The PlaidML compiler generates specialized machine learn-
ing programs for a variety of hardware targets, such as
commodity CPUs and GPUs. It is straightforward to install
and configure on most well-known operating systems, often
by installing a single Python package and running a setup
command to select the desired hardware backend.

A specialized machine learning program generated by the
compiler consists of a set of kernels shaped for optimized
execution given the available hardware resources, and an
execution schedule that orders kernels to take advantage of
temporal memory locality and to fit within device memory
constraints.

It’s straightforward to write novel machine learning opera-
tions and compile them by using Tile, a language for speci-
fying polyhedral tensor operations. Additionally, most com-
mon machine learning operations are provided via nGraph,
a machine-learning operation library. nGraph supports a
number of frontend interfaces, including TensorFlow and
ONNX; it can also be coded to directly, either in C++ or in
Python.

Both PlaidML and nGraph are licensed under the Apache
License 2.0.

2 NOVELTY

The demonstration shows that:

• It’s relatively easy to set up the nGraph/PlaidML
toolchain on commodity hardware

• The toolchain has good performance out-of-the-box

• The toolchain supports training and inference

1Intel Corporation, Santa Clara, California, USA. Correspon-
dence to: Robert Earhart <robert.earhart@intel.com>.

Proceedings of the 2nd SysML Conference, Palo Alto, CA, USA,
2019. Copyright 2019 by the author(s).

• The toolchain supports writing novel kernels

• The toolchain includes tools to help better understand
performance

Taken together, we believe the demonstration shows the
utility of the nGraph/PlaidML toolchain for both production
and research use cases.

3 LIVE ACTION

The audience will be shown a MacBook Pro. The machine
will be running the stock operating system configuration,
with the additions of iTerm2, Anaconda, and the Anaconda
packages & Python wheels implementing the demo.

The demo will start by opening an iTerm2 terminal window,
which the demonstrator will use to:

• Create an Anaconda environment with PlaidML,
nGraph, the nGraph/TensorFlow bridge, TensorFlow,
and the demo itself:

conda env create -n demo
conda activate -n demo

• Configure PlaidML:

plaidml-setup

• Launch the demo Jupyter notebook:

ngraph-plaidml-demo-sysml-2019

The first cell of the notebook will show the device config-
uration being used by PlaidML — i.e. what needs to be
specified about a device in order for PlaidML to generate
efficient kernels for it.

The next cell of the notebook will compare the latency of
style transfer using native TensorFlow (as installed from



nGraph/PlaidML Demo for SysML 2019

Anaconda) and TensorFlow with the PlaidML backend (via
nGraph and the nGraph/TensorFlow bridge). One UI button
will be used to start the camera feed, and a second will take
a snapshot (stopping the feed) and apply two models to it,
trained from Vincent Van Gogh’s Starry Night and Georges
Seurat’s A Sunday on La Grande Jatte. On snapshot, for
each backend, a row of three images will be displayed: a
source image captured by the camera, followed by the image
after transformation by each model, with the transfer latency
displayed below each output image.

The next cell of the notebook will demonstrate the use of
PlaidML’s eventing system for analyzing system perfor-
mance. Again, one button will be used to start the camera
feed, and a second will be used to take a snapshot (stopping
the feed). On snapshot, the notebook will apply a style
transfer using PlaidML, gathering a trace log; when com-
plete, the cell will display a scatter plot of the style transfer
kernels. When a kernel is selected, the generated source
code of the kernel will be displayed below the scatter plot.

The next cell of the notebook will demonstrate training a
style transfer model, using Leonardo da Vinci’s Mona Lisa
as the source image, displaying the time per epoch.

The final cell of the notebook will demonstrate writing a
custom Tile operation. The cell code will contain a Tile
function implementing a grouped convolution followed by a
ReLU, along with sizes for the input tensors. When run, the
cell will differentiate the function (displaying the autodiff-
generated Tile code), compile both forward and backward
passes, and display the generated source code of the result-
ing kernels.

4 INTERACTIVE SECTION

A MacBook Pro will be running style transfer inferences
live from its builtin camera. A Jupyter notebook will display
the live view next to the inference output. Above the outputs,
the notebook will display controls allowing users to select
the style model being used and the backend implementation;
below the outputs, the notebook will display a rolling graph
of inference times, with markers to show changes in the
style model and in the selected backend.

Additionally, cards will be provided with a link (textual
and QR) to a GitHub repository with the demo sources and
links to pre-packaged Python wheels. The audience will
be encouraged to experiment with the demo on their own
equipment — all demo sources will be released under the
Apache License 2.0.

5 DEMO EQUIPMENT

The demonstrator will bring:

• Two machines: each, a 2018 13 inch MacBook Pro
with touchbar, with an Intel Iris Plus Graphics 655.
One will be configured to run the live action demo; the
other will be reserved for audience interaction

• A monitor, for displaying the screen of the MacBook
running the Live Action portion of the demo

• Take-home cards with links to the demo sources

6 SPECIAL NEEDS

The demo has no special needs.


