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ABSTRACT
Machine Learning is transitioning from an art and science into a technology available to every developer. In the
near future, every application on every platform will incorporate trained models to encode data-based decisions
that would be impossible for developers to author. This presents a significant engineering challenge, since currently
data science and modeling are largely decoupled from standard software development processes.

In this demo we present ML.NET: a recently open sourced ML toolkit enabling .NET developers to author, train,
evaluate, and deploy ML models. We showcase the life-cycle of model development and deployment through a

Github issue classification problem.

1 INTRODUCTION

We are witnessing an explosion of new frameworks for build-
ing Machine Learning (ML) models (Abadi et al., 2016; cnt;
pyt; Pedregosa et al., 2011; h20). This profusion is moti-
vated by the transition from ML as an art and science into a
set of technologies readily available to every developer. An
outcome of this transition is the abundance of applications
that rely on trained models for functionalities that evade tra-
ditional programming due to their complex statistical nature.
This unfolding future, where most applications make use
of at least one model, profoundly differs from the current
practice in which data science and software engineering
are performed in separate and different processes. Further-
more, in current practice, models are routinely deployed and
managed in completely distinct ways from other software
artifacts. While typical software packages are seamlessly
compiled and run on a myriad of heterogeneous devices,
machine learning models are often relegated to be run as
web services in relatively inefficient containers (Lee et al.,
2018a;b). This pattern severely limits the kinds of applica-
tions one can build with machine learning capabilities.

At Microsoft, we have encountered this phenomenon early
on and across a wide spectrum of applications and devices,
ranging from services and server software to mobile and
desktop applications running on PCs, Servers, Data Centers,
Phones, Game Consoles and IOT devices. A ML toolkit
for such diverse use cases, must satisfy several constraints
but, most importantly, it has to capture the full prediction
pipeline that takes a test example from a given domain (e.g.,
an email with headers and body) and produces a predic-
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tion that can often be structured and domain-specific (e.g.,
a collection of likely short responses). The requirement
to encapsulate predictive pipelines is of paramount impor-
tance because it allows for effectively decoupling applica-
tion logic from model development. Carrying the complete
train-time pipeline into production provides a dependable
way for building efficient, reproducible, production-ready
models (Zinkevich).

In this demo we will present ML.NET (mld; Interlandi
et al., 2018): an open source machine learning framework
allowing .NET developers to author and deploy complex
ML pipelines composed of data featurizers and state of the
art machine learning models. Pipelines implemented and
trained using ML.NET can be seamlessly embedded into
.NET applications without any modification. Training and
prediction, in fact, share the same code paths, and (as we will
show) deploying a model into an application is as easy as
importing ML.NET runtime and binding the inputs/output
data sources. ML.NET’s ability to capture full, end-to-end
pipelines has been demonstrated by the fact that 1,000s of
Microsoft’s data scientists and developers have been using
ML.NET over the past decade, infusing 100s of products
and services (among which Windows, Bing, PowerPoint and
Excel) with machine learning models used by hundreds of
millions of users worldwide. In the demo, we will show how
the Visual Studio team employs ML.NET for the automatic
classification of Github issues. A simplified version of the
demo can be found online on the ML.NET tutorials page. !

"https://docs.microsoft.com/en-us/dotnet/machine-
learning/tutorials/
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2 DEMONSTRATION DETAILS

Github allows developers to fill issues against an online
repository when a bug is found, to request a missing feature,
to track new ideas, etc. It is common in large repositories
to have hundreds of issues running concurrently. To better
organize the work, Github allows developers to label issues
under categories usually referred to as areas. This labelling
process is however manual, and it requires developers to sift
through all the (eventually hundreds of) issues. The Visual
Studio team employs ML.NET to automatically attach labels
to issues, and therefore decrease the manual processing.

The demonstration will guide the attendants in the process
of creating an application for the automatic classification
of Github issues. The process can be summarized in 4
steps: (1) authoring the data ingestion and featurization
pipeline; (2) building and training the model; (3) evaluating
the model; and finally (4) model deployment in the applica-
tion. The demo will be carried on a MacOS laptop machine
with Visual Studio Code and .NET Core pre-installed. We
plan to provide an additional Windows machine for atten-
dants interested in creating and testing their own ML.NET
pipelines.

Data Ingestion and Feauturization Pipeline. ML.NET is a
.NET machine learning library that allows developers to
build complex machine learning pipelines. Pipelines are of-
ten composed of multiple transformation steps that featurize
and transform the raw input data. For this specific demo,
we will use a publicly available Github issues dataset > as
our input training data. This dataset is composed by a list of
textual columns (Title of the issue, Area and a Description):
we will show which options ML.NET provides to devel-
opers for text featurization, and we will compose a simple
pipeline translating the input data into feature vectors under-
standable by ML models. We will also exploit this first step
to introduce the main concepts representing data, data trans-
formations, and trainable operators in ML.NET: namely
the IDataView abstraction, and the concepts of Transformer
and Estimator.

Building and Training the Model. Featurization pipelines
are commonly followed by one or more ML models, ei-
ther stacked or forming ensembles. Predicting the area
in which an issue belongs to is a multi-class classification
problem. In this step we will describe which models are
available in ML.NET to solve this task, and we will use the
previously generated featurization pipeline to train a model
for automatically predicting issues’ area. We will also show
how commonly used techniques such as data caching can
improve training performance.

Model Evaluation. ML.NET allows developers to directly
evaluate the quality of models by using a test dataset and

proper evaluator modules. In this step, we will use a multi-
class evaluator to generate and print metrics related to the
authored pipeline. We will also show how ML.NET makes
easy to iterate over model parameters and evaluations until
a “good enough” model is generated.

Model Deployment. In the final step we will save the final
model and show how this can be loaded and embedded
into an application reacting to Github issues. The model
will be used to automatically predict the area the newly
posted issues should be in. ML.NET facilitates the process
of surfacing models into applications since the framework
takes care of serializing / deserializing pipelines and related
dependencies, without any user intervention.
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