Timezone: »

 
Poster
Improving the Accuracy, Scalability, and Performance of Graph Neural Networks with Roc
Zhihao Jia · Sina Lin · Mingyu Gao · Matei Zaharia · Alex Aiken

Mon Mar 04:30 PM -- 07:00 PM PST @ Ballroom A #24

Graph neural networks (GNNs) have been demonstrated to be an effective model for learning tasks related to graph structured data. Different from classical deep neural networks which handle relatively small individual samples, GNNs process very large graphs, which must be partitioned and processed in a distributed manner. We present Roc, a distributed multi-GPU framework for fast GNN training and inference on graphs. Roc is up to 4.6x faster than existing GNN frameworks on a single machine, and can scale to multiple GPUs on multiple machines. This performance gain is mainly enabled by Roc's graph partitioning and memory management optimizations. Besides performance acceleration, the better scalability of Roc also enables the exploration of more sophisticated GNN architectures on large, real-world graphs. We demonstrate that a class of GNN architectures significantly deeper and larger than the typical two-layer models can achieve new state-of-the-art classification accuracy on the widely used Reddit dataset.

Author Information

Zhihao Jia (Stanford University)
Sina Lin (Microsoft)
Mingyu Gao (Tsinghua University)
Matei Zaharia (Stanford and Databricks)
Alex Aiken (Stanford University)

Related Events (a corresponding poster, oral, or spotlight)

More from the Same Authors

  • 2020 Workshop: MLOps Systems »
    Debo Dutta · Matei Zaharia · Ce Zhang
  • 2020 Oral: MLPerf Training Benchmark »
    Peter Mattson · Christine Cheng · Gregory Diamos · Cody Coleman · Paulius Micikevicius · David Patterson · Hanlin Tang · Gu-Yeon Wei · Peter Bailis · Victor Bittorf · David Brooks · Dehao Chen · Debo Dutta · Udit Gupta · Kim Hazelwood · Andy Hock · Xinyuan Huang · Daniel Kang · David Kanter · Naveen Kumar · Jeffery Liao · Deepak Narayanan · Tayo Oguntebi · Gennady Pekhimenko · Lillian Pentecost · Vijay Janapa Reddi · Taylor Robie · Tom St John · Carole-Jean Wu · Lingjie Xu · Cliff Young · Matei Zaharia
  • 2020 Poster: Willump: A Statistically-Aware End-to-end Optimizer for Machine Learning Inference »
    Peter Kraft · Daniel Kang · Deepak Narayanan · Shoumik Palkar · Peter Bailis · Matei Zaharia
  • 2020 Poster: MLPerf Training Benchmark »
    Peter Mattson · Christine Cheng · Gregory Diamos · Cody Coleman · Paulius Micikevicius · David Patterson · Hanlin Tang · Gu-Yeon Wei · Peter Bailis · Victor Bittorf · David Brooks · Dehao Chen · Debo Dutta · Udit Gupta · Kim Hazelwood · Andy Hock · Xinyuan Huang · Daniel Kang · David Kanter · Naveen Kumar · Jeffery Liao · Deepak Narayanan · Tayo Oguntebi · Gennady Pekhimenko · Lillian Pentecost · Vijay Janapa Reddi · Taylor Robie · Tom St John · Carole-Jean Wu · Lingjie Xu · Cliff Young · Matei Zaharia
  • 2020 Poster: Model Assertions for Monitoring and Improving ML Models »
    Daniel Kang · Deepti Raghavan · Peter Bailis · Matei Zaharia
  • 2020 Oral: Model Assertions for Monitoring and Improving ML Models »
    Daniel Kang · Deepti Raghavan · Peter Bailis · Matei Zaharia
  • 2020 Oral: Willump: A Statistically-Aware End-to-end Optimizer for Machine Learning Inference »
    Peter Kraft · Daniel Kang · Deepak Narayanan · Shoumik Palkar · Peter Bailis · Matei Zaharia