Timezone: »
Machine learning is experiencing an explosion of software and hardware solutions, and needs industry-standard performance benchmarks to drive design and enable competitive evaluation. However, machine learning training presents a number of unique challenges to benchmarking that do not exist in other domains: (1) some optimizations that improve training throughput actually increase time to solution, (2) training is stochastic and time to solution has high variance, and (3) the software and hardware systems are so diverse that they cannot be fairly benchmarked with the same binary, code, or even hyperparameters. We present MLPerf, a machine learning benchmark that overcomes these challenges. We quantitatively evaluate the efficacy of MLPerf in driving community progress on performance and scalability across two rounds of results from multiple vendors.
Author Information
Peter Mattson (Google)
Christine Cheng (Intel)
Gregory Diamos (Baidu)
Cody Coleman (Stanford)
Paulius Micikevicius (NVIDIA)
David Patterson (Google)
Hanlin Tang (Intel Corporation)
Gu-Yeon Wei
Peter Bailis (Stanford University)
Victor Bittorf (Google)
David Brooks (Harvard University)
Dehao Chen (Google)
Debo Dutta (Cisco Systems, Inc.)
Udit Gupta (Harvard University)
Kim Hazelwood (Facebook AI)
Andy Hock (Cerebras Systems)
Xinyuan Huang (Cisco Systems, Inc.)
Daniel Kang (Stanford University)
David Kanter (RWI)
Naveen Kumar (Google)
Jeffery Liao (Synopsys)
Deepak Narayanan (Stanford)
Tayo Oguntebi (Google LLC)
Gennady Pekhimenko (University of Toronto)
Lillian Pentecost (Harvard University)
Vijay Janapa Reddi (Harvard University)
Taylor Robie (Google)
Tom St John (Tesla)
Carole-Jean Wu (Facebook AI)
Lingjie Xu (Alibaba)
Cliff Young (google.com)
Matei Zaharia (Stanford and Databricks)
Related Events (a corresponding poster, oral, or spotlight)
-
2020 Poster: MLPerf Training Benchmark »
Tue. Mar 3rd 12:30 -- 03:00 AM Room Ballroom A #34
More from the Same Authors
-
2022 Poster: Sustainable AI: Environmental Implications, Challenges and Opportunities »
Carole-Jean Wu · Ramya Raghavendra · Udit Gupta · Bilge Acun · Newsha Ardalani · Kiwan Maeng · Gloria Chang · Fiona Aga · Jinshi Huang · Charles Bai · Michael Gschwind · Anurag Gupta · Myle Ott · Anastasia Melnikov · Salvatore Candido · David Brooks · Geeta Chauhan · Benjamin Lee · Hsien-Hsin Lee · Bugra Akyildiz · Maximilian Balandat · Joe Spisak · Ravi Jain · Mike Rabbat · Kim Hazelwood -
2022 Poster: MLPerf Mobile Inference Benchmark: An Industry-Standard Open-Source Machine Learning Benchmark for On-Device AI »
Vijay Janapa Reddi · David Kanter · Peter Mattson · Jared Duke · Thai Nguyen · Ramesh Chukka · Ken Shiring · Koan-Sin Tan · Mark Charlebois · William Chou · Mostafa El-Khamy · Jungwook Hong · Tom St John · Cindy Trinh · Michael Buch · Mark Mazumder · Relja Markovic · Thomas Atta · Fatih Cakir · Masoud Charkhabi · Xiaodong Chen · Cheng-Ming Chiang · Dave Dexter · Terry Heo · Guenther Schmuelling · Maryam Shabani · Dylan Zika -
2022 Poster: DietCode: Automatic Optimization for Dynamic Tensor Programs »
Bojian Zheng · Ziheng Jiang · Cody Hao Yu · Haichen Shen · Joshua Fromm · Yizhi Liu · Yida Wang · Luis Ceze · Tianqi Chen · Gennady Pekhimenko -
2023 Workshop: Workshop on Systems for Next-Gen AI Paradigms »
Jason Yik · Brian Anderson · Charlotte Frenkel · Vijay Janapa Reddi -
2023 Workshop: The 3rd On-Device Intelligence Workshop »
Vijay Janapa Reddi · Paul Whatmough · Vikas Chandra · Pete Warden · Brian Plancher · Colby Banbury · Matthew Stewart -
2023 Workshop: Benchmarking Machine Learning Workloads on Emerging Hardware »
Tom St John · Murali Emani · Wenqian Dong -
2023 Poster: MegaBlocks: Efficient Sparse Training with Mixture-of-Experts »
Trevor Gale · Deepak Narayanan · Cliff Young · Matei Zaharia -
2023 Poster: RecD: Deduplication for End-to-End Deep Learning Recommendation Model Training Infrastructure »
Mark Zhao · Dhruv Choudhary · Devashish Tyagi · Ajay Somani · Max Kaplan · Sung-Han Lin · Sarunya Pumma · Jongsoo Park · Aarti Basant · Niket Agarwal · Carole-Jean Wu · Christos Kozyrakis -
2023 Poster: Edge Impulse: An MLOps Platform for Tiny Machine Learning »
colby banbury · Vijay Janapa Reddi · Alexander Elium · · David Tischler · Daniel Situnayake · Carl Ward · Louis Moreau · Jenny Plunkett · Matthew Kelcey · Mathijs Baaijens · Alessandro Grande · Dmitry Maslov · Arthur Beavis · Jan Jongboom · Jessica Quaye -
2023 Poster: XRBench: An Extended Reality (XR) Machine Learning Benchmark Suite for the Metaverse »
Hyoukjun Kwon · Krishnakumar Nair · Jamin Seo · Jason Yik · Debabrata Mohapatra · Dongyuan Zhan · JINOOK SONG · Peter Capak · Peizhao Zhang · Peter Vajda · Colby Banbury · Mark Mazumder · Liangzhen Lai · Ashish Sirasao · Tushar Krishna · Harshit Khaitan · Vikas Chandra · Vijay Janapa Reddi -
2023 Poster: Hotline Profiler: Automatic Annotation and A Multi-Scale Timeline for Visualizing Time-Use in DNN Training »
Daniel Snider · Fanny Chevalier · Gennady Pekhimenko -
2023 : Closing Remarks »
Vijay Janapa Reddi -
2023 : Invited Talk 2 »
Carole-Jean Wu -
2022 Workshop: Benchmarking Machine Learning Workloads on Emerging Hardware »
Tom St John · Murali Emani -
2022 Symposium: Chips & Compilers »
Yida Wang · Gennady Pekhimenko -
2022 Break: Closing Remarks »
Diana Marculescu · Yuejie Chi · Carole-Jean Wu -
2022 Oral: Sustainable AI: Environmental Implications, Challenges and Opportunities »
Carole-Jean Wu · Ramya Raghavendra · Udit Gupta · Bilge Acun · Newsha Ardalani · Kiwan Maeng · Gloria Chang · Fiona Aga · Jinshi Huang · Charles Bai · Michael Gschwind · Anurag Gupta · Myle Ott · Anastasia Melnikov · Salvatore Candido · David Brooks · Geeta Chauhan · Benjamin Lee · Hsien-Hsin Lee · Bugra Akyildiz · Maximilian Balandat · Joe Spisak · Ravi Jain · Mike Rabbat · Kim Hazelwood -
2022 Oral: MLPerf Mobile Inference Benchmark: An Industry-Standard Open-Source Machine Learning Benchmark for On-Device AI »
Vijay Janapa Reddi · David Kanter · Peter Mattson · Jared Duke · Thai Nguyen · Ramesh Chukka · Ken Shiring · Koan-Sin Tan · Mark Charlebois · William Chou · Mostafa El-Khamy · Jungwook Hong · Tom St John · Cindy Trinh · Michael Buch · Mark Mazumder · Relja Markovic · Thomas Atta · Fatih Cakir · Masoud Charkhabi · Xiaodong Chen · Cheng-Ming Chiang · Dave Dexter · Terry Heo · Guenther Schmuelling · Maryam Shabani · Dylan Zika -
2022 Oral: DietCode: Automatic Optimization for Dynamic Tensor Programs »
Bojian Zheng · Ziheng Jiang · Cody Hao Yu · Haichen Shen · Joshua Fromm · Yizhi Liu · Yida Wang · Luis Ceze · Tianqi Chen · Gennady Pekhimenko -
2022 Break: Opening Remarks »
Diana Marculescu · Yuejie Chi · Carole-Jean Wu -
2021 : Panel Session - Lizy John (UT Austin), David Kaeli (Northeastern University), Tushar Krishna (Georgia Tech), Peter Mattson (Google), Brian Van Essen (LLNL), Venkatram Vishwanath (ANL), Carole-Jean Wu (Facebook) »
Tom St John · LIZY JOHn · Tushar Krishna · Peter Mattson · Venkatram Vishwanath · Carole-Jean Wu · David Kaeli · Brian Van Essen -
2021 : Closing session »
Udit Gupta · Carole-Jean Wu -
2021 : Closing remarks »
Udit Gupta · Lillian Pentecost · Abhishek Gupta · Mayoore Jaiswal · Shagun Sodhani -
2021 : Pushing the Limits of Recommender Training Speed: An MLPerf Experience »
Tayo Oguntebi -
2021 : Industry/Academia Panel »
Zachary C Lipton · Udit Gupta · Lillian Pentecost · Shagun Sodhani · Abhishek Gupta · Mayoore Jaiswal · Michael Carbin · Devi Parikh · Gennady Pekhimenko -
2021 : "Machine Learning Tools: Skyline and RL-Scope" - Gennady Pekhimenko and James Gleeson (University of Toronto) »
Gennady Pekhimenko -
2021 : The Future of ML is Tiny and Bright: Challenges and Opportunities »
Vijay Janapa Reddi -
2021 : "Designing and Optimizing AI Systems for Deep Learning Recommendation and Beyond" - Carole-Jean Wu (Facebook) »
Carole-Jean Wu -
2021 : DeepRecSys: A System for Optimizing End-To-End At-scale Neural Recommendation Inference »
Udit Gupta -
2021 Workshop: Benchmarking Machine Learning Workloads on Emerging Hardware »
Tom St John · Murali Emani -
2021 Workshop: Journal of Opportunities, Unexpected limitations, Retrospectives, Negative results, and Experiences »
Abhishek Gupta · Udit Gupta · Mayoore Jaiswal · Lillian Pentecost · Shagun Sodhani · David Brooks · Joelle Pineau -
2021 : Introduction - Tom St. John (Cruise) »
Tom St John -
2021 : Welcome to JOURNE »
Udit Gupta · Lillian Pentecost · Mayoore Jaiswal · Abhishek Gupta · Shagun Sodhani -
2021 Workshop: 2nd On-Device Intelligence Workshop »
Paul Whatmough · Vijay Janapa Reddi · Chuteng Zhou · Igor Federov · Matthew Mattina · Pete Warden · Ganesh Venkatesh · Vikas Chandra -
2021 Workshop: Personalized Recommendation Systems and Algorithms »
Udit Gupta · Carole-Jean Wu · Gu-Yeon Wei · David Brooks -
2021 : Welcome to the 3rd PeRSonAl workshop »
Udit Gupta · Carole-Jean Wu -
2021 Poster: Horizontally Fused Training Array: An Effective Hardware Utilization Squeezer for Training Novel Deep Learning Models »
Shang Wang · Peiming Yang · Yuxuan Zheng · Xin Li · Gennady Pekhimenko -
2021 Poster: Boveda: Building an On-Chip Deep Learning Memory Hierarchy Brick by Brick »
Isak Edo Vivancos · Sayeh Sharify · Daniel Ly-Ma · Ameer Abdelhadi · Ciaran Bannon · Milos Nikolic · Mostafa Mahmoud · Alberto Delmas Lascorz · Gennady Pekhimenko · Andreas Moshovos -
2021 Poster: Understanding and Improving Failure Tolerant Training for Deep Learning Recommendation with Partial Recovery »
Kiwan Maeng · Shivam Bharuka · Isabel Gao · Mark Jeffrey · Vikram Saraph · Bor-Yiing Su · Caroline Trippel · Jiyan Yang · Mike Rabbat · Brandon Lucia · Carole-Jean Wu -
2021 Oral: Understanding and Improving Failure Tolerant Training for Deep Learning Recommendation with Partial Recovery »
Kiwan Maeng · Shivam Bharuka · Isabel Gao · Mark Jeffrey · Vikram Saraph · Bor-Yiing Su · Caroline Trippel · Jiyan Yang · Mike Rabbat · Brandon Lucia · Carole-Jean Wu -
2021 Oral: Horizontally Fused Training Array: An Effective Hardware Utilization Squeezer for Training Novel Deep Learning Models »
Shang Wang · Peiming Yang · Yuxuan Zheng · Xin Li · Gennady Pekhimenko -
2021 Oral: Boveda: Building an On-Chip Deep Learning Memory Hierarchy Brick by Brick »
Isak Edo Vivancos · Sayeh Sharify · Daniel Ly-Ma · Ameer Abdelhadi · Ciaran Bannon · Milos Nikolic · Mostafa Mahmoud · Alberto Delmas Lascorz · Gennady Pekhimenko · Andreas Moshovos -
2021 Poster: RL-Scope: Cross-stack Profiling for Deep Reinforcement Learning Workloads »
James Gleeson · Srivatsan Krishnan · Moshe Gabel · Vijay Janapa Reddi · Eyal de Lara · Gennady Pekhimenko -
2021 Poster: IOS: Inter-Operator Scheduler for CNN Acceleration »
Yaoyao Ding · Ligeng Zhu · Zhihao Jia · Gennady Pekhimenko · Song Han -
2021 Oral: IOS: Inter-Operator Scheduler for CNN Acceleration »
Yaoyao Ding · Ligeng Zhu · Zhihao Jia · Gennady Pekhimenko · Song Han -
2021 Oral: RL-Scope: Cross-stack Profiling for Deep Reinforcement Learning Workloads »
James Gleeson · Srivatsan Krishnan · Moshe Gabel · Vijay Janapa Reddi · Eyal de Lara · Gennady Pekhimenko -
2021 Poster: TensorFlow Lite Micro: Embedded Machine Learning for TinyML Systems »
Robert David · Jared Duke · Advait Jain · Vijay Janapa Reddi · Nat Jeffries · Jian Li · Nick Kreeger · Ian Nappier · Meghna Natraj · Tiezhen Wang · Pete Warden · Rocky Rhodes · Rocky Rhodes -
2021 Poster: EXPLORING THE LIMITS OF CONCURRENCY IN ML TRAINING ON GOOGLE TPUS »
Sameer Kumar · Yu Wang · Cliff Young · James Bradbury · Naveen Kumar · Dehao Chen · Andy Swing -
2021 Poster: MicroNets: Neural Network Architectures for Deploying TinyML Applications on Commodity Microcontrollers »
Colby Banbury · Chuteng Zhou · Igor Fedorov · Ramon Matas · Urmish Thakker · Dibakar Gope · Vijay Janapa Reddi · Matthew Mattina · Paul Whatmough -
2021 Poster: TT-Rec: Tensor Train Compression for Deep Learning Recommendation Models »
Chunxing Yin · Bilge Acun · Carole-Jean Wu · Xing Liu -
2021 Oral: TT-Rec: Tensor Train Compression for Deep Learning Recommendation Models »
Chunxing Yin · Bilge Acun · Carole-Jean Wu · Xing Liu -
2021 Oral: EXPLORING THE LIMITS OF CONCURRENCY IN ML TRAINING ON GOOGLE TPUS »
Sameer Kumar · Yu Wang · Cliff Young · James Bradbury · Naveen Kumar · Dehao Chen · Andy Swing -
2021 Oral: TensorFlow Lite Micro: Embedded Machine Learning for TinyML Systems »
Robert David · Jared Duke · Advait Jain · Vijay Janapa Reddi · Nat Jeffries · Jian Li · Nick Kreeger · Ian Nappier · Meghna Natraj · Tiezhen Wang · Pete Warden · Rocky Rhodes · Rocky Rhodes -
2021 Oral: MicroNets: Neural Network Architectures for Deploying TinyML Applications on Commodity Microcontrollers »
Colby Banbury · Chuteng Zhou · Igor Fedorov · Ramon Matas · Urmish Thakker · Dibakar Gope · Vijay Janapa Reddi · Matthew Mattina · Paul Whatmough -
2021 : Panel Discussion »
Luis Ceze · Cliff Young · Chris Lattner -
2021 : Q&A for Cliff Young »
Cliff Young -
2021 : TPU »
Cliff Young -
2020 Workshop: Benchmarking Machine Learning Workloads on Emerging Hardware »
Tom St John · Murali Emani -
2020 Workshop: MLOps Systems »
Debo Dutta · Matei Zaharia · Ce Zhang -
2020 Oral: A Systematic Methodology for Analysis of Deep Learning Hardware and Software Platforms »
Yu Wang · Gu-Yeon Wei · David Brooks -
2020 Oral: Improving the Accuracy, Scalability, and Performance of Graph Neural Networks with Roc »
Zhihao Jia · Sina Lin · Mingyu Gao · Matei Zaharia · Alex Aiken -
2020 Poster: A Systematic Methodology for Analysis of Deep Learning Hardware and Software Platforms »
Yu Wang · Gu-Yeon Wei · David Brooks -
2020 Poster: Willump: A Statistically-Aware End-to-end Optimizer for Machine Learning Inference »
Peter Kraft · Daniel Kang · Deepak Narayanan · Shoumik Palkar · Peter Bailis · Matei Zaharia -
2020 Poster: Improving the Accuracy, Scalability, and Performance of Graph Neural Networks with Roc »
Zhihao Jia · Sina Lin · Mingyu Gao · Matei Zaharia · Alex Aiken -
2020 Poster: BPPSA: Scaling Back-propagation by Parallel Scan Algorithm »
Shang Wang · Yifan Bai · Gennady Pekhimenko -
2020 Poster: Model Assertions for Monitoring and Improving ML Models »
Daniel Kang · Deepti Raghavan · Peter Bailis · Matei Zaharia -
2020 Demonstration: Skyline: Interactive In-editor Performance Visualizations and Debugging for DNN Training »
Geoffrey Yu · Tovi Grossman · Gennady Pekhimenko -
2020 Demonstration: Air Learning: An End To End Learning Gym For Aerial Robots »
Srivatsan Krishnan · Colby Banbury · Bardienus Duisterhof · Aleksandra Faust · Vijay Janapa Reddi -
2020 Oral: Model Assertions for Monitoring and Improving ML Models »
Daniel Kang · Deepti Raghavan · Peter Bailis · Matei Zaharia -
2020 Oral: Willump: A Statistically-Aware End-to-end Optimizer for Machine Learning Inference »
Peter Kraft · Daniel Kang · Deepak Narayanan · Shoumik Palkar · Peter Bailis · Matei Zaharia -
2020 Oral: BPPSA: Scaling Back-propagation by Parallel Scan Algorithm »
Shang Wang · Yifan Bai · Gennady Pekhimenko