Timezone: »
Deep reinforcement learning (RL) has made groundbreaking advancements in robotics, data center management and other applications. Unfortunately, system-level bottlenecks in RL workloads are poorly understood; we observe fundamental structural differences in RL workloads that make them inherently less GPU-bound than supervised learning (SL). To explain where training time is spent in RL workloads, we propose RL-Scope, a cross-stack profiler that scopes low-level CPU/GPU resource usage to high-level algorithmic operations, and provides accurate insights by correcting for profiling overhead. Using RL-Scope, we survey RL workloads across its major dimensions including ML backend, RL algorithm, and simulator. For ML backends, we explain a 2.3× difference in runtime between equivalent PyTorch and TensorFlow algorithm implementations, and identify a bottleneck rooted in overly abstracted algorithm implementations. For RL algorithms and simulators, we show that on-policy algorithms are at least 3.5× more simulation-bound than off-policy algorithms. Finally, we profile a scale-up workload and demonstrate that GPU utilization metrics reported by commonly used tools dramatically inflate GPU usage, whereas RL-Scope reports true GPU-bound time. RL-Scope is an open-source tool available at https://github.com/UofT-EcoSystem/rlscope.
Author Information
James Gleeson (University of Toronto)
Srivatsan Krishnan (Harvard University)
Moshe Gabel (University of Toronto )
Vijay Janapa Reddi (Harvard University)
Eyal de Lara (University of Toronto)
Gennady Pekhimenko (University of Toronto)
Related Events (a corresponding poster, oral, or spotlight)
-
2021 Poster: RL-Scope: Cross-stack Profiling for Deep Reinforcement Learning Workloads »
08 Apr 12:00 AM Room
More from the Same Authors
-
2022 Poster: MLPerf Mobile Inference Benchmark: An Industry-Standard Open-Source Machine Learning Benchmark for On-Device AI »
Vijay Janapa Reddi · David Kanter · Peter Mattson · Jared Duke · Thai Nguyen · Ramesh Chukka · Ken Shiring · Koan-Sin Tan · Mark Charlebois · William Chou · Mostafa El-Khamy · Jungwook Hong · Tom St John · Cindy Trinh · Michael Buch · Mark Mazumder · Relja Markovic · Thomas Atta · Fatih Cakir · Masoud Charkhabi · Xiaodong Chen · Cheng-Ming Chiang · Dave Dexter · Terry Heo · Guenther Schmuelling · Maryam Shabani · Dylan Zika -
2022 Poster: DietCode: Automatic Optimization for Dynamic Tensor Programs »
Bojian Zheng · Ziheng Jiang · Cody Hao Yu · Haichen Shen · Joshua Fromm · Yizhi Liu · Yida Wang · Luis Ceze · Tianqi Chen · Gennady Pekhimenko -
2023 Workshop: Workshop on Systems for Next-Gen AI Paradigms »
Jason Yik · Brian Anderson · Charlotte Frenkel · Vijay Janapa Reddi -
2023 Workshop: The 3rd On-Device Intelligence Workshop »
Vijay Janapa Reddi · Paul Whatmough · Vikas Chandra · Pete Warden · Brian Plancher · Colby Banbury · Matthew Stewart -
2023 Poster: Edge Impulse: An MLOps Platform for Tiny Machine Learning »
colby banbury · Vijay Janapa Reddi · Alexander Elium · · David Tischler · Daniel Situnayake · Carl Ward · Louis Moreau · Jenny Plunkett · Matthew Kelcey · Mathijs Baaijens · Alessandro Grande · Dmitry Maslov · Arthur Beavis · Jan Jongboom · Jessica Quaye -
2023 Poster: XRBench: An Extended Reality (XR) Machine Learning Benchmark Suite for the Metaverse »
Hyoukjun Kwon · Krishnakumar Nair · Jamin Seo · Jason Yik · Debabrata Mohapatra · Dongyuan Zhan · JINOOK SONG · Peter Capak · Peizhao Zhang · Peter Vajda · Colby Banbury · Mark Mazumder · Liangzhen Lai · Ashish Sirasao · Tushar Krishna · Harshit Khaitan · Vikas Chandra · Vijay Janapa Reddi -
2023 Poster: Hotline Profiler: Automatic Annotation and A Multi-Scale Timeline for Visualizing Time-Use in DNN Training »
Daniel Snider · Fanny Chevalier · Gennady Pekhimenko -
2023 : Closing Remarks »
Vijay Janapa Reddi -
2022 : Optimizing Data Collection in Deep Reinforcement Learning »
James Gleeson -
2022 Symposium: Chips & Compilers »
Yida Wang · Gennady Pekhimenko -
2022 Oral: MLPerf Mobile Inference Benchmark: An Industry-Standard Open-Source Machine Learning Benchmark for On-Device AI »
Vijay Janapa Reddi · David Kanter · Peter Mattson · Jared Duke · Thai Nguyen · Ramesh Chukka · Ken Shiring · Koan-Sin Tan · Mark Charlebois · William Chou · Mostafa El-Khamy · Jungwook Hong · Tom St John · Cindy Trinh · Michael Buch · Mark Mazumder · Relja Markovic · Thomas Atta · Fatih Cakir · Masoud Charkhabi · Xiaodong Chen · Cheng-Ming Chiang · Dave Dexter · Terry Heo · Guenther Schmuelling · Maryam Shabani · Dylan Zika -
2022 Oral: DietCode: Automatic Optimization for Dynamic Tensor Programs »
Bojian Zheng · Ziheng Jiang · Cody Hao Yu · Haichen Shen · Joshua Fromm · Yizhi Liu · Yida Wang · Luis Ceze · Tianqi Chen · Gennady Pekhimenko -
2021 : Industry/Academia Panel »
Zachary C Lipton · Udit Gupta · Lillian Pentecost · Shagun Sodhani · Abhishek Gupta · Mayoore Jaiswal · Michael Carbin · Devi Parikh · Gennady Pekhimenko -
2021 : "Machine Learning Tools: Skyline and RL-Scope" - Gennady Pekhimenko and James Gleeson (University of Toronto) »
Gennady Pekhimenko -
2021 : The Future of ML is Tiny and Bright: Challenges and Opportunities »
Vijay Janapa Reddi -
2021 Workshop: 2nd On-Device Intelligence Workshop »
Paul Whatmough · Vijay Janapa Reddi · Chuteng Zhou · Igor Federov · Matthew Mattina · Pete Warden · Ganesh Venkatesh · Vikas Chandra -
2021 Poster: Horizontally Fused Training Array: An Effective Hardware Utilization Squeezer for Training Novel Deep Learning Models »
Shang Wang · Peiming Yang · Yuxuan Zheng · Xin Li · Gennady Pekhimenko -
2021 Poster: Boveda: Building an On-Chip Deep Learning Memory Hierarchy Brick by Brick »
Isak Edo Vivancos · Sayeh Sharify · Daniel Ly-Ma · Ameer Abdelhadi · Ciaran Bannon · Milos Nikolic · Mostafa Mahmoud · Alberto Delmas Lascorz · Gennady Pekhimenko · Andreas Moshovos -
2021 Oral: Horizontally Fused Training Array: An Effective Hardware Utilization Squeezer for Training Novel Deep Learning Models »
Shang Wang · Peiming Yang · Yuxuan Zheng · Xin Li · Gennady Pekhimenko -
2021 Oral: Boveda: Building an On-Chip Deep Learning Memory Hierarchy Brick by Brick »
Isak Edo Vivancos · Sayeh Sharify · Daniel Ly-Ma · Ameer Abdelhadi · Ciaran Bannon · Milos Nikolic · Mostafa Mahmoud · Alberto Delmas Lascorz · Gennady Pekhimenko · Andreas Moshovos -
2021 Poster: IOS: Inter-Operator Scheduler for CNN Acceleration »
Yaoyao Ding · Ligeng Zhu · Zhihao Jia · Gennady Pekhimenko · Song Han -
2021 Oral: IOS: Inter-Operator Scheduler for CNN Acceleration »
Yaoyao Ding · Ligeng Zhu · Zhihao Jia · Gennady Pekhimenko · Song Han -
2021 Poster: TensorFlow Lite Micro: Embedded Machine Learning for TinyML Systems »
Robert David · Jared Duke · Advait Jain · Vijay Janapa Reddi · Nat Jeffries · Jian Li · Nick Kreeger · Ian Nappier · Meghna Natraj · Tiezhen Wang · Pete Warden · Rocky Rhodes · Rocky Rhodes -
2021 Poster: MicroNets: Neural Network Architectures for Deploying TinyML Applications on Commodity Microcontrollers »
Colby Banbury · Chuteng Zhou · Igor Fedorov · Ramon Matas · Urmish Thakker · Dibakar Gope · Vijay Janapa Reddi · Matthew Mattina · Paul Whatmough -
2021 Oral: TensorFlow Lite Micro: Embedded Machine Learning for TinyML Systems »
Robert David · Jared Duke · Advait Jain · Vijay Janapa Reddi · Nat Jeffries · Jian Li · Nick Kreeger · Ian Nappier · Meghna Natraj · Tiezhen Wang · Pete Warden · Rocky Rhodes · Rocky Rhodes -
2021 Oral: MicroNets: Neural Network Architectures for Deploying TinyML Applications on Commodity Microcontrollers »
Colby Banbury · Chuteng Zhou · Igor Fedorov · Ramon Matas · Urmish Thakker · Dibakar Gope · Vijay Janapa Reddi · Matthew Mattina · Paul Whatmough -
2020 Oral: MLPerf Training Benchmark »
Peter Mattson · Christine Cheng · Gregory Diamos · Cody Coleman · Paulius Micikevicius · David Patterson · Hanlin Tang · Gu-Yeon Wei · Peter Bailis · Victor Bittorf · David Brooks · Dehao Chen · Debo Dutta · Udit Gupta · Kim Hazelwood · Andy Hock · Xinyuan Huang · Daniel Kang · David Kanter · Naveen Kumar · Jeffery Liao · Deepak Narayanan · Tayo Oguntebi · Gennady Pekhimenko · Lillian Pentecost · Vijay Janapa Reddi · Taylor Robie · Tom St John · Carole-Jean Wu · Lingjie Xu · Cliff Young · Matei Zaharia -
2020 Poster: MLPerf Training Benchmark »
Peter Mattson · Christine Cheng · Gregory Diamos · Cody Coleman · Paulius Micikevicius · David Patterson · Hanlin Tang · Gu-Yeon Wei · Peter Bailis · Victor Bittorf · David Brooks · Dehao Chen · Debo Dutta · Udit Gupta · Kim Hazelwood · Andy Hock · Xinyuan Huang · Daniel Kang · David Kanter · Naveen Kumar · Jeffery Liao · Deepak Narayanan · Tayo Oguntebi · Gennady Pekhimenko · Lillian Pentecost · Vijay Janapa Reddi · Taylor Robie · Tom St John · Carole-Jean Wu · Lingjie Xu · Cliff Young · Matei Zaharia -
2020 Poster: BPPSA: Scaling Back-propagation by Parallel Scan Algorithm »
Shang Wang · Yifan Bai · Gennady Pekhimenko -
2020 Demonstration: Skyline: Interactive In-editor Performance Visualizations and Debugging for DNN Training »
Geoffrey Yu · Tovi Grossman · Gennady Pekhimenko -
2020 Demonstration: Air Learning: An End To End Learning Gym For Aerial Robots »
Srivatsan Krishnan · Colby Banbury · Bardienus Duisterhof · Aleksandra Faust · Vijay Janapa Reddi -
2020 Oral: BPPSA: Scaling Back-propagation by Parallel Scan Algorithm »
Shang Wang · Yifan Bai · Gennady Pekhimenko