Timezone: »
This paper explores the environmental impact of the super-linear growth trends for AI from a holistic perspective, spanning Data, Algorithms, and System Hardware. We characterize the carbon footprint of AI computing by examining the model development cycle across industry-scale machine learning use cases and, at the same time, considering the life cycle of system hardware. Taking a step further, we capture the operational and manufacturing carbon footprint of AI computing and present an end-to-end analysis for what and how hardware-software design and at-scale optimization can help reduce the overall carbon footprint of AI. Based on the industry experience and lessons learned, we share the key challenges and chart out important development directions across the many dimensions of AI. We hope the key messages and insights presented in this paper can inspire the community to advance the field of AI in an environmentally-responsible manner.
Author Information
Carole-Jean Wu (Meta)
Ramya Raghavendra (Facebook)
Udit Gupta (Facebook)
Bilge Acun (Facebook AI Research)
Newsha Ardalani (Facebook AI Research (FAIR))
Kiwan Maeng (Facebook)
Gloria Chang (Facebook)
Fiona Aga (Facebook)
Jinshi Huang (Facebook)
Charles Bai (Facebook AI)
Michael Gschwind (Facebook)
Anurag Gupta (Facebook)
Myle Ott (Facebook AI Research)
Anastasia Melnikov (Facebook)
Salvatore Candido (Meta)
David Brooks (Harvard/Facebook)
Geeta Chauhan (Facebook)
Benjamin Lee (Facebook)
Hsien-Hsin Lee (Facebook AI Research)
Bugra Akyildiz (Facebook)
Maximilian Balandat (Facebook)
Joe Spisak (Facebook)
Ravi Jain (Facebook)
Mike Rabbat (Facebook FAIR)
Kim Hazelwood (Facebook AI)
Related Events (a corresponding poster, oral, or spotlight)
-
2022 Poster: Sustainable AI: Environmental Implications, Challenges and Opportunities »
Dates n/a. Room
More from the Same Authors
-
2022 Poster: PAPAYA: Practical, Private, and Scalable Federated Learning »
Dzmitry Huba · John Nguyen · Kshitiz Malik · Ruiyu Zhu · Mike Rabbat · Ashkan Yousefpour · Carole-Jean Wu · Hongyuan Zhan · Pavel Ustinov · Harish Srinivas · Kaikai Wang · Anthony Shoumikhin · Jesik Min · Mani Malek -
2022 Break: Closing Remarks »
Diana Marculescu · Yuejie Chi · Carole-Jean Wu -
2022 Oral: PAPAYA: Practical, Private, and Scalable Federated Learning »
Dzmitry Huba · John Nguyen · Kshitiz Malik · Ruiyu Zhu · Mike Rabbat · Ashkan Yousefpour · Carole-Jean Wu · Hongyuan Zhan · Pavel Ustinov · Harish Srinivas · Kaikai Wang · Anthony Shoumikhin · Jesik Min · Mani Malek -
2022 Break: Opening Remarks »
Diana Marculescu · Yuejie Chi · Carole-Jean Wu -
2021 : Panel Session - Lizy John (UT Austin), David Kaeli (Northeastern University), Tushar Krishna (Georgia Tech), Peter Mattson (Google), Brian Van Essen (LLNL), Venkatram Vishwanath (ANL), Carole-Jean Wu (Facebook) »
Tom St John · LIZY JOHn · Tushar Krishna · Peter Mattson · Venkatram Vishwanath · Carole-Jean Wu · David Kaeli · Brian Van Essen -
2021 : Closing session »
Udit Gupta · Carole-Jean Wu -
2021 : "Designing and Optimizing AI Systems for Deep Learning Recommendation and Beyond" - Carole-Jean Wu (Facebook) »
Carole-Jean Wu -
2021 Workshop: Personalized Recommendation Systems and Algorithms »
Udit Gupta · Carole-Jean Wu · Gu-Yeon Wei · David Brooks -
2021 : Welcome to the 3rd PeRSonAl workshop »
Udit Gupta · Carole-Jean Wu -
2021 Poster: Understanding and Improving Failure Tolerant Training for Deep Learning Recommendation with Partial Recovery »
Kiwan Maeng · Shivam Bharuka · Isabel Gao · Mark Jeffrey · Vikram Saraph · Bor-Yiing Su · Caroline Trippel · Jiyan Yang · Mike Rabbat · Brandon Lucia · Carole-Jean Wu -
2021 Oral: Understanding and Improving Failure Tolerant Training for Deep Learning Recommendation with Partial Recovery »
Kiwan Maeng · Shivam Bharuka · Isabel Gao · Mark Jeffrey · Vikram Saraph · Bor-Yiing Su · Caroline Trippel · Jiyan Yang · Mike Rabbat · Brandon Lucia · Carole-Jean Wu -
2021 Poster: TT-Rec: Tensor Train Compression for Deep Learning Recommendation Models »
Chunxing Yin · Bilge Acun · Carole-Jean Wu · Xing Liu -
2021 Oral: TT-Rec: Tensor Train Compression for Deep Learning Recommendation Models »
Chunxing Yin · Bilge Acun · Carole-Jean Wu · Xing Liu -
2020 Oral: MLPerf Training Benchmark »
Peter Mattson · Christine Cheng · Gregory Diamos · Cody Coleman · Paulius Micikevicius · David Patterson · Hanlin Tang · Gu-Yeon Wei · Peter Bailis · Victor Bittorf · David Brooks · Dehao Chen · Debo Dutta · Udit Gupta · Kim Hazelwood · Andy Hock · Xinyuan Huang · Daniel Kang · David Kanter · Naveen Kumar · Jeffery Liao · Deepak Narayanan · Tayo Oguntebi · Gennady Pekhimenko · Lillian Pentecost · Vijay Janapa Reddi · Taylor Robie · Tom St John · Carole-Jean Wu · Lingjie Xu · Cliff Young · Matei Zaharia -
2020 Poster: MLPerf Training Benchmark »
Peter Mattson · Christine Cheng · Gregory Diamos · Cody Coleman · Paulius Micikevicius · David Patterson · Hanlin Tang · Gu-Yeon Wei · Peter Bailis · Victor Bittorf · David Brooks · Dehao Chen · Debo Dutta · Udit Gupta · Kim Hazelwood · Andy Hock · Xinyuan Huang · Daniel Kang · David Kanter · Naveen Kumar · Jeffery Liao · Deepak Narayanan · Tayo Oguntebi · Gennady Pekhimenko · Lillian Pentecost · Vijay Janapa Reddi · Taylor Robie · Tom St John · Carole-Jean Wu · Lingjie Xu · Cliff Young · Matei Zaharia