Timezone: »
Real-time multi-model multi-task (MMMT) workloads, a new form of deep learning inference workloads, are emerging for applications areas like extended reality (XR) to support metaverse use cases. These workloads combine user interactivity with computationally complex machine learning (ML) activities. Compared to standard ML applications, these ML workloads present unique difficulties and constraints. Real-time MMMT workloads impose heterogeneity and concurrency requirements on future ML systems and devices, necessitating the development of new capabilities. This paper begins with a discussion of the various characteristics of these real-time MMMT ML workloads and presents an ontology for evaluating the performance of future ML hardware for XR systems. Next, we present XR Bench, a collection of MMMT ML tasks, models, and usage scenarios that execute these models in three representative ways: cascaded, concurrent, and cascaded-concurrency for XR use cases. Finally, we emphasize the need for new metrics that capture the requirements properly. We hope that our work will stimulate research and lead to the development of a new generation of ML systems for XR use cases.
Author Information
Hyoukjun Kwon (University of California, Irvine)
Krishnakumar Nair (Meta)
Jamin Seo (Georgia Institute of Technology)
Jason Yik (Harvard University)
Jason Yik is a first-year Ph.D. student at Harvard University, advised by Prof. Vijay Janapa Reddi. His research interests are broadly in next-generation systems and applications, specifically in neuromorphic computing and extended-reality devices.
Debabrata Mohapatra (Meta)
Dongyuan Zhan (Meta Inc.)
JINOOK SONG (META)
Peter Capak (Meta XRTech)
Peizhao Zhang (Meta)
Peter Vajda (Facebook)
Colby Banbury (Harvard)
Mark Mazumder (Harvard University)
Liangzhen Lai (Facebook Inc)
Ashish Sirasao (Meta inc)
Tushar Krishna (Georgia Institute of Technology)
Harshit Khaitan (Meta)
Vikas Chandra (Meta)
Vijay Janapa Reddi (Harvard University)
More from the Same Authors
-
2022 Poster: MLPerf Mobile Inference Benchmark: An Industry-Standard Open-Source Machine Learning Benchmark for On-Device AI »
Vijay Janapa Reddi · David Kanter · Peter Mattson · Jared Duke · Thai Nguyen · Ramesh Chukka · Ken Shiring · Koan-Sin Tan · Mark Charlebois · William Chou · Mostafa El-Khamy · Jungwook Hong · Tom St John · Cindy Trinh · Michael Buch · Mark Mazumder · Relja Markovic · Thomas Atta · Fatih Cakir · Masoud Charkhabi · Xiaodong Chen · Cheng-Ming Chiang · Dave Dexter · Terry Heo · Guenther Schmuelling · Maryam Shabani · Dylan Zika -
2023 Poster: Edge Impulse: An MLOps Platform for Tiny Machine Learning »
colby banbury · Vijay Janapa Reddi · Alexander Elium · Shawn Hymel · David Tischler · Daniel Situnayake · Carl Ward · Louis Moreau · Jenny Plunkett · Matthew Kelcey · Mathijs Baaijens · Alessandro Grande · Dmitry Maslov · Arthur Beavis · Jan Jongboom · Jessica Quaye -
2023 Poster: SUBGRAPH STATIONARY HARDWARE-SOFTWARE INFERENCE CO-DESIGN »
Payman Behnam · Alexey Tumanov · Tushar Krishna · Pranav Gadikar · Yangyu Chen · Jianming Tong · Yue Pan · Abhimanyu Rajeshkumar Bambhaniya · Alind Khare -
2023 : Closing Remarks »
Vijay Janapa Reddi -
2023 Workshop: The 3rd On-Device Intelligence Workshop »
Vijay Janapa Reddi · Paul Whatmough · Vikas Chandra · Pete Warden · Brian Plancher · Colby Banbury · Matthew Stewart -
2023 : Opening Remarks »
Colby Banbury -
2023 Workshop: Workshop on Systems for Next-Gen AI Paradigms »
Jason Yik · Brian Anderson · Charlotte Frenkel · Vijay Janapa Reddi · Zergham Ahmed -
2022 : MetaBench: Real-Time Multi-Modal Benchmark for Metaverse »
Hyoukjun Kwon -
2022 Tutorial: ASTRA-sim: Enabling SW/HW Co-Design Exploration for Distributed Deep Learning Training Platforms »
Tushar Krishna -
2022 : Introduction to Distributed DL Training »
Tushar Krishna -
2022 Oral: MLPerf Mobile Inference Benchmark: An Industry-Standard Open-Source Machine Learning Benchmark for On-Device AI »
Vijay Janapa Reddi · David Kanter · Peter Mattson · Jared Duke · Thai Nguyen · Ramesh Chukka · Ken Shiring · Koan-Sin Tan · Mark Charlebois · William Chou · Mostafa El-Khamy · Jungwook Hong · Tom St John · Cindy Trinh · Michael Buch · Mark Mazumder · Relja Markovic · Thomas Atta · Fatih Cakir · Masoud Charkhabi · Xiaodong Chen · Cheng-Ming Chiang · Dave Dexter · Terry Heo · Guenther Schmuelling · Maryam Shabani · Dylan Zika -
2021 : Panel Session - Lizy John (UT Austin), David Kaeli (Northeastern University), Tushar Krishna (Georgia Tech), Peter Mattson (Google), Brian Van Essen (LLNL), Venkatram Vishwanath (ANL), Carole-Jean Wu (Facebook) »
Tom St John · LIZY JOHn · Tushar Krishna · Peter Mattson · Venkatram Vishwanath · Carole-Jean Wu · David Kaeli · Brian Van Essen -
2021 : The Future of ML is Tiny and Bright: Challenges and Opportunities »
Vijay Janapa Reddi -
2021 Workshop: SysML4Health: Scalable Systems for ML-driven Analytics in Healthcare »
Alexey Tumanov · Jimeng Sun · Tushar Krishna · Vivek Sarkar · Dawn Song -
2021 Workshop: 2nd On-Device Intelligence Workshop »
Paul Whatmough · Vijay Janapa Reddi · Chuteng Zhou · Igor Federov · Matthew Mattina · Pete Warden · Ganesh Venkatesh · Vikas Chandra -
2021 Poster: RL-Scope: Cross-stack Profiling for Deep Reinforcement Learning Workloads »
James Gleeson · Srivatsan Krishnan · Moshe Gabel · Vijay Janapa Reddi · Eyal de Lara · Gennady Pekhimenko -
2021 Oral: RL-Scope: Cross-stack Profiling for Deep Reinforcement Learning Workloads »
James Gleeson · Srivatsan Krishnan · Moshe Gabel · Vijay Janapa Reddi · Eyal de Lara · Gennady Pekhimenko -
2021 Poster: TensorFlow Lite Micro: Embedded Machine Learning for TinyML Systems »
Robert David · Jared Duke · Advait Jain · Vijay Janapa Reddi · Nat Jeffries · Jian Li · Nick Kreeger · Ian Nappier · Meghna Natraj · Tiezhen Wang · Pete Warden · Rocky Rhodes · Rocky Rhodes -
2021 Poster: MicroNets: Neural Network Architectures for Deploying TinyML Applications on Commodity Microcontrollers »
Colby Banbury · Chuteng Zhou · Igor Fedorov · Ramon Matas · Urmish Thakker · Dibakar Gope · Vijay Janapa Reddi · Matthew Mattina · Paul Whatmough -
2021 Oral: TensorFlow Lite Micro: Embedded Machine Learning for TinyML Systems »
Robert David · Jared Duke · Advait Jain · Vijay Janapa Reddi · Nat Jeffries · Jian Li · Nick Kreeger · Ian Nappier · Meghna Natraj · Tiezhen Wang · Pete Warden · Rocky Rhodes · Rocky Rhodes -
2021 Oral: MicroNets: Neural Network Architectures for Deploying TinyML Applications on Commodity Microcontrollers »
Colby Banbury · Chuteng Zhou · Igor Fedorov · Ramon Matas · Urmish Thakker · Dibakar Gope · Vijay Janapa Reddi · Matthew Mattina · Paul Whatmough -
2020 Oral: MLPerf Training Benchmark »
Peter Mattson · Christine Cheng · Gregory Diamos · Cody Coleman · Paulius Micikevicius · David Patterson · Hanlin Tang · Gu-Yeon Wei · Peter Bailis · Victor Bittorf · David Brooks · Dehao Chen · Debo Dutta · Udit Gupta · Kim Hazelwood · Andy Hock · Xinyuan Huang · Daniel Kang · David Kanter · Naveen Kumar · Jeffery Liao · Deepak Narayanan · Tayo Oguntebi · Gennady Pekhimenko · Lillian Pentecost · Vijay Janapa Reddi · Taylor Robie · Tom St John · Carole-Jean Wu · Lingjie Xu · Cliff Young · Matei Zaharia -
2020 Poster: MLPerf Training Benchmark »
Peter Mattson · Christine Cheng · Gregory Diamos · Cody Coleman · Paulius Micikevicius · David Patterson · Hanlin Tang · Gu-Yeon Wei · Peter Bailis · Victor Bittorf · David Brooks · Dehao Chen · Debo Dutta · Udit Gupta · Kim Hazelwood · Andy Hock · Xinyuan Huang · Daniel Kang · David Kanter · Naveen Kumar · Jeffery Liao · Deepak Narayanan · Tayo Oguntebi · Gennady Pekhimenko · Lillian Pentecost · Vijay Janapa Reddi · Taylor Robie · Tom St John · Carole-Jean Wu · Lingjie Xu · Cliff Young · Matei Zaharia -
2020 Demonstration: Air Learning: An End To End Learning Gym For Aerial Robots »
Srivatsan Krishnan · Colby Banbury · Bardienus Duisterhof · Aleksandra Faust · Vijay Janapa Reddi