
Parallelizing Hyperband for Large-Scale Tuning

Lisha Li†, Kevin Jamieson∗,
Afshin Rostamizadeh∗∗, and Ameet Talwalkar†

∗UC Berkeley, †Carnegie Mellon University, and ∗∗Google

1 INTRODUCTION
Althoughmachine learningmodels have recently achieved dramatic
successes in a variety of practical applications, these models are
highly sensitive to internal parameters, i.e., hyperparameters. In
this modern era of machine learning, three trends motivate a new
approach to hyperparameter tuning:
(1) High-dimensional hyperparameter spaces. Machine learn-

ing models are becoming increasingly complex, as evidenced
by modern neural networks with dozens of hyperparameters.
For such complex models with hyperparameters that interact in
unknown ways, a practitioner is forced to evaluate potentially
thousands of different hyperparameter settings.

(2) Increasing training times. As datasets grow larger and mod-
els grow more complex, training a model is becoming dramati-
cally more expensive, often taking days or weeks on specialized
high-performance hardware. This trend is particularly onerous
in the context of hyperparameter tuning, as a new model must
be trained to evaluate each putative hyperparameter configura-
tion.

(3) Rise of parallel computing. The combination of a growing
number of hyperparameters and longer training time per model
preclude the use of sequential hyperparameter tuning meth-
ods; we simply cannot wait months or years to find a suitable
hyperparameter setting. Thankfully, the expansion of cloud
computing resources has made specialized hardware like GPUs
and TPUs [1] widely accessible. Leveraging these parallel and
distributed computational resources presents an attractive path
forward to combat the increasingly challenging problem of
hyperparameter optimization.
Our goal is to design a hyperparameter tuning algorithm that

can effectively leverage parallel resources. This goal seems triv-
ial with standard methods like random search, where we could
train different configurations in an embarrasingly parallel fashion.
However, in practice, the number of putative configurations often
dwarfs the number of available parallel resources. Hence, we aim to
tackle the following problem, which we refer to as the large-scale
regime for hyperparameter optimization:

Evaluate orders of magnitude more hyperparameter
configurations than available parallel workers in a small

multiple of the wall-clock time needed to train a single model.
Our main contribution in this work is a practical hyperparameter

tuning algorithm for the large-scale regime that exploits parallelism
and aggressive early-stopping techniques. We build upon the Hy-
perband algorithm [6], adapting it for the parallel setting through
asynchronous promotions. Furthermore, we conduct a thorough
empirical study of our algorithm on multiple benchmarks, demon-
strating success in the large-scale regime on tasks with up to 500
workers.

2 ALGORITHM

Input: r , η (default η = 3), s
Algorithm async_SHA()

repeat
for free worker do

(θ ,k) = get_job()
worker performs run_then_return_val_loss(θ , rηs+k )

end
for completed job (θ , k) with loss l do

Update configuration θ in rung k with loss l .
end

Procedure get_job()
// A configuration in a given rung is

‘‘promotable’’ if its validation loss places it in

the top 1/η fraction of completed configurations in

its rung and it has not already been promoted.

Let θk be the furthest trained promotable configuration
θ , with k indicating its rung.
if θk exists then

Promote θk to rung k + 1.
return θk ,k + 1

else
Add a new configuration θ0 to bottom rung.
return θ0, 0

end
Algorithm 1: Asynchronous Successive Halving Algorithm.

Hyperband [6] calls the Successive Halving algorithm [4, 5], with
different early-stopping rates as a subroutine. Li et al. [6] showed
that Successive Halving with aggressive early-stopping matches
or outperforms Hyperband for a wide array of hyperparameter
optimization tasks. Additionally, for modern day hyperparameter
tuning problems with high-dimensional search spaces and mod-
els with high training cost, aggressive early-stopping is necessary
for the problem to be tractable. Hence, we focus on adapting the
synchronous Successive Halving algorithm (SHA) for the parallel
setting. Note that parallelizing Hyperband is trivia after paralleliz-
ing SHA—simply take the best performing configuration across
multiple brackets of SHA with different early-stopping rates.

Algorithm 1 requires as input a minimum resource r , the re-
duction factor η > 1, and the minimum early-stopping rate s . We
will refer to trials of SHA with different values of s as brackets
and, within a bracket, we will refer to each round of promotion
as a rung with the base rung numbered 0 and increasing. For a
given η, only the top 1/η fraction of configurations are promoted
to the next rung. For a given s , a minimum resource of rηs will
be allocated to each configuration. Hence, lower s corresponds to



more aggressive early-stopping, with s = 0 prescribing a mini-
mum resource of r . Another component of the algorithm is the
run_then_return_val_loss(θ , r ) subroutine, which returns the
validation loss after training the model with the hyperparameter
setting θ and resource allocation r . The subroutine is asynchronous
and the code execution of async_SHA continues after the job is
passed to the worker.

Asynchronous SHA promotes configurations to the next rung
whenever possible instead of waiting for a rung to complete before
proceeding to the next rung. Additionally, if no promotions are
possible, the asynchronous algorithm simply adds a configuration
to the base rung, so that more configurations can be promoted to
the upper rungs.

Note there is no bound on the number of rungs in a bracket
and, therefore, no bound on the maximum resource that can be
allocated to a given configuration. However, an upper bound on the
maximum resource is often desired (i.e. limit the number of epochs
of stochastic gradient descent when training a neural network
to prevent overfitting [3]). Algorithm 1 can be easily adapted to
enforce a maximum resource per configuration by limiting the
number of rungs. Specifically, for a given maximum resource R and
bracket s , limit the number of rungs to logη (R/r ) − s + 1.

3 EMPIRICAL EVALUATION
We conduct empirical studies on two large-scale benchmarks that
take on the order of weeks to run. Both benchmarks show that
asynchronous SHA is well suited for the large-scale regime and can
successfully find good hyperparameter settings under resource and
time constraints. We consider brackets of asynchronous SHA with
η = 4 and a bounded resource per configuration R, with time(R)
representing the average time to train a single model. For both tasks,
the resources allocated to different configurations is the number
of training records, which translates into the number of training
iterations after accounting for certain hyperparameters. Finally,
due to the computational burden of these experiments, we perform
only a single trial of each tuner.

For the first task, we tune a one layer LSTM language model for
next word prediction on the Penn Treebank (PTB) dataset [7]. The
benchmark has 10 hyperparameters that control both the model
architecture as well as the optimization routine. We also evaluate
Vizier with and without the performance curve early-stopping rule
[2] on this benchmark to provide a baseline for Bayesian optimiza-
tion methods. Each tuner is given 500 workers and 10×time(R). We
set the minimum resource to r = Rη−4, leading to 5 possible brack-
ets of SHA. The results in Figure 1 show that the brackets with more
aggressive early-stopping rates outperform random search. Bracket
0 found a good configuration for this task in 3×time(R). By that time,
random search (Bracket 4) had evaluated 1.5k configurations, com-
pared to 1.8k for Vizier, 2.3k for Vizier with early-stopping, and 52k
for Bracket 0, the bracket with the most aggressive early-stopping
rate. Our results show bracket 0 and bracket 1 are competitive
with Vizier, despite being much simpler and easier to implement.
Additionally, whereas Vizier (Early-Stop) uses the heuristic perfor-
mance curve early-stopping method introduced by Golovin et al.
[2], SHA offers a way to perform principled early-stopping. Lastly,
for a fair comparison of parallel Hyperband to Vizier, we also show

0R 1R 2R 3R 4R 5R 6R 7R 8R 9R 10R
Time

80

90

100

110

120

130

140

Pe
rp

le
xi

ty

LSTM on PTB
Bracket 0
Bracket 1
Bracket 2
Bracket 3

Bracket 4 (Random)
Vizier
Vizier (Early-Stop)
Vizier 5x (Early-Stop)

Figure 1: Large-scale experiments that take on the order of
weeks to run. The x-axis is measured in units of average
time to train a configuration, i.e. 4R indicates 4× the time
to train an average configuration. Due to the high computa-
tional cost, progress for a single trial is shown in each chart.

the performance of Vizier 5× (Early-Stop), which has 2.5k workers,
i.e. 5× the resources as that of a single bracket. Remarkably, par-
allel Hyperband, via bracket 1, matches the performance of Vizier
5× (Early-Stop) without any of the optimization overhead associ-
ated with Bayesian methods, using simple random sampling and
adaptive resource allocation.

The acoustic modeling task trains an LSTM on a small collection
of 250 thousand spoken recordings of anonymized and aggregated
typed search queries. The search space we consider has 8 hyperpa-
rameters and includes models with up to 5 LSTM layers. Our model
uses the LSTM cell introduced in Sak et al. [8] with a recurrent pro-
jection layer. Each tuning method is given 20 workers and allowed
to run for 7 × time(R). Note that the search space includes models
that take nearly the entire time allowance to train. The minimum
resource for SHA is set to r = Rη−3 for a total of 4 possible brackets.
The results in Figure 1 show a similar relative ordering of the brack-
ets of SHA. Bracket 0 found a configuration with error rate below
30% in 2× time(R) and evaluated over one thousand configurations
in that time with just 20 workers.

REFERENCES
[1] Jeff Dean and Urs Hölzle. Build and train machine learning models on our

new google cloud tpus, 2017. URL https://www.blog.google/topics/google-cloud/
google-cloud-offer-tpus-machine-learning/.

[2] Daniel Golovin, Benjamin Sonik, Subhodeep Moitra, Greg Kochanski, John Karro,
and D.Sculley. Google vizier: A service for black-box optimization. In KDD, 2017.

2

https://www.blog.google/topics/google-cloud/google-cloud-offer-tpus-machine-learning/
https://www.blog.google/topics/google-cloud/google-cloud-offer-tpus-machine-learning/


[3] Moritz Hardt, Benjamin Recht, and Yoram Singer. Train faster, generalize better:
Stability of stochastic gradient descent. In ICML, 2016.

[4] K. Jamieson and A. Talwalkar. Non-stochastic best arm identification and hyper-
parameter optimization. In AISTATS, 2015.

[5] Z. Karnin, T. Koren, and O. Somekh. Almost optimal exploration in multi-armed
bandits. In ICML, 2013.

[6] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar. Hyperband: A
novel bandit-based approach to hyperparameter optimization. arXiv:1603.06560,
2016.

[7] Mitchell Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. Building a
large annotated corpus of english: The penn treebank. Computational Linguistics,
19(2):313–330, 1993.

[8] Has̨im Sak, Andrew Senior, and Beaufays Franc̨oise. Long short-term memory
recurrent neural network architectures for large scale acoustic modeling. In ISCA,
2014.

3


	1 Introduction
	2 Algorithm
	3 Empirical Evaluation
	References

